%{ /* Parse a string into an internal time stamp. Copyright (C) 1999, 2000, 2002, 2003, 2004 Free Software Foundation, Inc. This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */ /* Originally written by Steven M. Bellovin while at the University of North Carolina at Chapel Hill. Later tweaked by a couple of people on Usenet. Completely overhauled by Rich $alz and Jim Berets in August, 1990. Modified by Paul Eggert in August 1999 to do the right thing about local DST, and in February 2004 to support nanosecond-resolution time stamps. Unlike previous versions, this version is reentrant. */ /* FIXME: Check for arithmetic overflow in all cases, not just some of them. FIXME: The current code uses 'int' to count seconds; it should use something like 'intmax_t' to support time stamps that don't fit in 32 bits. */ #ifdef HAVE_CONFIG_H # include #endif #include "getdate.h" #include /* Since the code of getdate.y is not included in the Emacs executable itself, there is no need to #define static in this file. Even if the code were included in the Emacs executable, it probably wouldn't do any harm to #undef it here; this will only cause problems if we try to write to a static variable, which I don't think this code needs to do. */ #ifdef emacs # undef static #endif #include #include #include /* for `free'; used by Bison 1.27 */ #if STDC_HEADERS || (! defined isascii && ! HAVE_ISASCII) # define IN_CTYPE_DOMAIN(c) 1 #else # define IN_CTYPE_DOMAIN(c) isascii (c) #endif #define ISSPACE(c) (IN_CTYPE_DOMAIN (c) && isspace (c)) #define ISALPHA(c) (IN_CTYPE_DOMAIN (c) && isalpha (c)) #define ISLOWER(c) (IN_CTYPE_DOMAIN (c) && islower (c)) #define ISDIGIT_LOCALE(c) (IN_CTYPE_DOMAIN (c) && isdigit (c)) /* ISDIGIT differs from ISDIGIT_LOCALE, as follows: - Its arg may be any int or unsigned int; it need not be an unsigned char. - It's guaranteed to evaluate its argument exactly once. - It's typically faster. POSIX says that only '0' through '9' are digits. Prefer ISDIGIT to ISDIGIT_LOCALE unless it's important to use the locale's definition of `digit' even when the host does not conform to POSIX. */ #define ISDIGIT(c) ((unsigned int) (c) - '0' <= 9) #include #if USE_UNLOCKED_IO # include "unlocked-io.h" #endif #if __GNUC__ < 2 || (__GNUC__ == 2 && __GNUC_MINOR__ < 8) || __STRICT_ANSI__ # define __attribute__(x) #endif #ifndef ATTRIBUTE_UNUSED # define ATTRIBUTE_UNUSED __attribute__ ((__unused__)) #endif #define EPOCH_YEAR 1970 #define TM_YEAR_BASE 1900 #define HOUR(x) ((x) * 60) /* An integer value, and the number of digits in its textual representation. */ typedef struct { long int value; size_t digits; } textint; /* An entry in the lexical lookup table. */ typedef struct { char const *name; int type; int value; } table; /* Meridian: am, pm, or 24-hour style. */ enum { MERam, MERpm, MER24 }; enum { BILLION = 1000000000, LOG10_BILLION = 9 }; /* Information passed to and from the parser. */ typedef struct { /* The input string remaining to be parsed. */ const char *input; /* N, if this is the Nth Tuesday. */ long int day_ordinal; /* Day of week; Sunday is 0. */ int day_number; /* tm_isdst flag for the local zone. */ int local_isdst; /* Time zone, in minutes east of UTC. */ long int time_zone; /* Style used for time. */ int meridian; /* Gregorian year, month, day, hour, minutes, seconds, and nanoseconds. */ textint year; long int month; long int day; long int hour; long int minutes; struct timespec seconds; /* includes nanoseconds */ /* Relative year, month, day, hour, minutes, seconds, and nanoseconds. */ long int rel_year; long int rel_month; long int rel_day; long int rel_hour; long int rel_minutes; long int rel_seconds; long int rel_ns; /* Counts of nonterminals of various flavors parsed so far. */ bool timespec_seen; size_t dates_seen; size_t days_seen; size_t local_zones_seen; size_t rels_seen; size_t times_seen; size_t zones_seen; /* Table of local time zone abbrevations, terminated by a null entry. */ table local_time_zone_table[3]; } parser_control; #define PC (* (parser_control *) parm) #define YYLEX_PARAM parm #define YYPARSE_PARAM parm static int yyerror (); static int yylex (); %} /* We want a reentrant parser. */ %pure_parser /* This grammar has 13 shift/reduce conflicts. */ %expect 13 %union { long int intval; textint textintval; struct timespec timespec; } %token tAGO tDST %token tDAY tDAY_UNIT tDAYZONE tHOUR_UNIT tLOCAL_ZONE tMERIDIAN %token tMINUTE_UNIT tMONTH tMONTH_UNIT tSEC_UNIT tYEAR_UNIT tZONE %token tSNUMBER tUNUMBER %token tSDECIMAL_NUMBER tUDECIMAL_NUMBER %type o_merid %type seconds signed_seconds unsigned_seconds %% spec: timespec | items ; timespec: '@' seconds { PC.seconds = $2; PC.timespec_seen = true; } ; items: /* empty */ | items item ; item: time { PC.times_seen++; } | local_zone { PC.local_zones_seen++; } | zone { PC.zones_seen++; } | date { PC.dates_seen++; } | day { PC.days_seen++; } | rel { PC.rels_seen++; } | number ; time: tUNUMBER tMERIDIAN { PC.hour = $1.value; PC.minutes = 0; PC.seconds.tv_sec = 0; PC.seconds.tv_nsec = 0; PC.meridian = $2; } | tUNUMBER ':' tUNUMBER o_merid { PC.hour = $1.value; PC.minutes = $3.value; PC.seconds.tv_sec = 0; PC.seconds.tv_nsec = 0; PC.meridian = $4; } | tUNUMBER ':' tUNUMBER tSNUMBER { PC.hour = $1.value; PC.minutes = $3.value; PC.seconds.tv_sec = 0; PC.seconds.tv_nsec = 0; PC.meridian = MER24; PC.zones_seen++; PC.time_zone = $4.value % 100 + ($4.value / 100) * 60; } | tUNUMBER ':' tUNUMBER ':' unsigned_seconds o_merid { PC.hour = $1.value; PC.minutes = $3.value; PC.seconds = $5; PC.meridian = $6; } | tUNUMBER ':' tUNUMBER ':' unsigned_seconds tSNUMBER { PC.hour = $1.value; PC.minutes = $3.value; PC.seconds = $5; PC.meridian = MER24; PC.zones_seen++; PC.time_zone = $6.value % 100 + ($6.value / 100) * 60; } ; local_zone: tLOCAL_ZONE { PC.local_isdst = $1; } | tLOCAL_ZONE tDST { PC.local_isdst = $1 < 0 ? 1 : $1 + 1; } ; zone: tZONE { PC.time_zone = $1; } | tDAYZONE { PC.time_zone = $1 + 60; } | tZONE tDST { PC.time_zone = $1 + 60; } ; day: tDAY { PC.day_ordinal = 1; PC.day_number = $1; } | tDAY ',' { PC.day_ordinal = 1; PC.day_number = $1; } | tUNUMBER tDAY { PC.day_ordinal = $1.value; PC.day_number = $2; } ; date: tUNUMBER '/' tUNUMBER { PC.month = $1.value; PC.day = $3.value; } | tUNUMBER '/' tUNUMBER '/' tUNUMBER { /* Interpret as YYYY/MM/DD if the first value has 4 or more digits, otherwise as MM/DD/YY. The goal in recognizing YYYY/MM/DD is solely to support legacy machine-generated dates like those in an RCS log listing. If you want portability, use the ISO 8601 format. */ if (4 <= $1.digits) { PC.year = $1; PC.month = $3.value; PC.day = $5.value; } else { PC.month = $1.value; PC.day = $3.value; PC.year = $5; } } | tUNUMBER tSNUMBER tSNUMBER { /* ISO 8601 format. YYYY-MM-DD. */ PC.year = $1; PC.month = -$2.value; PC.day = -$3.value; } | tUNUMBER tMONTH tSNUMBER { /* e.g. 17-JUN-1992. */ PC.day = $1.value; PC.month = $2; PC.year.value = -$3.value; PC.year.digits = $3.digits; } | tMONTH tSNUMBER tSNUMBER { /* e.g. JUN-17-1992. */ PC.month = $1; PC.day = -$2.value; PC.year.value = -$3.value; PC.year.digits = $3.digits; } | tMONTH tUNUMBER { PC.month = $1; PC.day = $2.value; } | tMONTH tUNUMBER ',' tUNUMBER { PC.month = $1; PC.day = $2.value; PC.year = $4; } | tUNUMBER tMONTH { PC.day = $1.value; PC.month = $2; } | tUNUMBER tMONTH tUNUMBER { PC.day = $1.value; PC.month = $2; PC.year = $3; } ; rel: relunit tAGO { PC.rel_ns = -PC.rel_ns; PC.rel_seconds = -PC.rel_seconds; PC.rel_minutes = -PC.rel_minutes; PC.rel_hour = -PC.rel_hour; PC.rel_day = -PC.rel_day; PC.rel_month = -PC.rel_month; PC.rel_year = -PC.rel_year; } | relunit ; relunit: tUNUMBER tYEAR_UNIT { PC.rel_year += $1.value * $2; } | tSNUMBER tYEAR_UNIT { PC.rel_year += $1.value * $2; } | tYEAR_UNIT { PC.rel_year += $1; } | tUNUMBER tMONTH_UNIT { PC.rel_month += $1.value * $2; } | tSNUMBER tMONTH_UNIT { PC.rel_month += $1.value * $2; } | tMONTH_UNIT { PC.rel_month += $1; } | tUNUMBER tDAY_UNIT { PC.rel_day += $1.value * $2; } | tSNUMBER tDAY_UNIT { PC.rel_day += $1.value * $2; } | tDAY_UNIT { PC.rel_day += $1; } | tUNUMBER tHOUR_UNIT { PC.rel_hour += $1.value * $2; } | tSNUMBER tHOUR_UNIT { PC.rel_hour += $1.value * $2; } | tHOUR_UNIT { PC.rel_hour += $1; } | tUNUMBER tMINUTE_UNIT { PC.rel_minutes += $1.value * $2; } | tSNUMBER tMINUTE_UNIT { PC.rel_minutes += $1.value * $2; } | tMINUTE_UNIT { PC.rel_minutes += $1; } | tUNUMBER tSEC_UNIT { PC.rel_seconds += $1.value * $2; } | tSNUMBER tSEC_UNIT { PC.rel_seconds += $1.value * $2; } | tSDECIMAL_NUMBER tSEC_UNIT { PC.rel_seconds += $1.tv_sec * $2; PC.rel_ns += $1.tv_nsec * $2; } | tUDECIMAL_NUMBER tSEC_UNIT { PC.rel_seconds += $1.tv_sec * $2; PC.rel_ns += $1.tv_nsec * $2; } | tSEC_UNIT { PC.rel_seconds += $1; } ; seconds: signed_seconds | unsigned_seconds; signed_seconds: tSDECIMAL_NUMBER | tSNUMBER { $$.tv_sec = $1.value; $$.tv_nsec = 0; } ; unsigned_seconds: tUDECIMAL_NUMBER | tUNUMBER { $$.tv_sec = $1.value; $$.tv_nsec = 0; } ; number: tUNUMBER { if (PC.dates_seen && ! PC.rels_seen && (PC.times_seen || 2 < $1.digits)) PC.year = $1; else { if (4 < $1.digits) { PC.dates_seen++; PC.day = $1.value % 100; PC.month = ($1.value / 100) % 100; PC.year.value = $1.value / 10000; PC.year.digits = $1.digits - 4; } else { PC.times_seen++; if ($1.digits <= 2) { PC.hour = $1.value; PC.minutes = 0; } else { PC.hour = $1.value / 100; PC.minutes = $1.value % 100; } PC.seconds.tv_sec = 0; PC.seconds.tv_nsec = 0; PC.meridian = MER24; } } } ; o_merid: /* empty */ { $$ = MER24; } | tMERIDIAN { $$ = $1; } ; %% static table const meridian_table[] = { { "AM", tMERIDIAN, MERam }, { "A.M.", tMERIDIAN, MERam }, { "PM", tMERIDIAN, MERpm }, { "P.M.", tMERIDIAN, MERpm }, { 0, 0, 0 } }; static table const dst_table[] = { { "DST", tDST, 0 } }; static table const month_and_day_table[] = { { "JANUARY", tMONTH, 1 }, { "FEBRUARY", tMONTH, 2 }, { "MARCH", tMONTH, 3 }, { "APRIL", tMONTH, 4 }, { "MAY", tMONTH, 5 }, { "JUNE", tMONTH, 6 }, { "JULY", tMONTH, 7 }, { "AUGUST", tMONTH, 8 }, { "SEPTEMBER",tMONTH, 9 }, { "SEPT", tMONTH, 9 }, { "OCTOBER", tMONTH, 10 }, { "NOVEMBER", tMONTH, 11 }, { "DECEMBER", tMONTH, 12 }, { "SUNDAY", tDAY, 0 }, { "MONDAY", tDAY, 1 }, { "TUESDAY", tDAY, 2 }, { "TUES", tDAY, 2 }, { "WEDNESDAY",tDAY, 3 }, { "WEDNES", tDAY, 3 }, { "THURSDAY", tDAY, 4 }, { "THUR", tDAY, 4 }, { "THURS", tDAY, 4 }, { "FRIDAY", tDAY, 5 }, { "SATURDAY", tDAY, 6 }, { 0, 0, 0 } }; static table const time_units_table[] = { { "YEAR", tYEAR_UNIT, 1 }, { "MONTH", tMONTH_UNIT, 1 }, { "FORTNIGHT",tDAY_UNIT, 14 }, { "WEEK", tDAY_UNIT, 7 }, { "DAY", tDAY_UNIT, 1 }, { "HOUR", tHOUR_UNIT, 1 }, { "MINUTE", tMINUTE_UNIT, 1 }, { "MIN", tMINUTE_UNIT, 1 }, { "SECOND", tSEC_UNIT, 1 }, { "SEC", tSEC_UNIT, 1 }, { 0, 0, 0 } }; /* Assorted relative-time words. */ static table const relative_time_table[] = { { "TOMORROW", tDAY_UNIT, 1 }, { "YESTERDAY",tDAY_UNIT, -1 }, { "TODAY", tDAY_UNIT, 0 }, { "NOW", tDAY_UNIT, 0 }, { "LAST", tUNUMBER, -1 }, { "THIS", tUNUMBER, 0 }, { "NEXT", tUNUMBER, 1 }, { "FIRST", tUNUMBER, 1 }, /*{ "SECOND", tUNUMBER, 2 }, */ { "THIRD", tUNUMBER, 3 }, { "FOURTH", tUNUMBER, 4 }, { "FIFTH", tUNUMBER, 5 }, { "SIXTH", tUNUMBER, 6 }, { "SEVENTH", tUNUMBER, 7 }, { "EIGHTH", tUNUMBER, 8 }, { "NINTH", tUNUMBER, 9 }, { "TENTH", tUNUMBER, 10 }, { "ELEVENTH", tUNUMBER, 11 }, { "TWELFTH", tUNUMBER, 12 }, { "AGO", tAGO, 1 }, { 0, 0, 0 } }; /* The time zone table. This table is necessarily incomplete, as time zone abbreviations are ambiguous; e.g. Australians interpret "EST" as Eastern time in Australia, not as US Eastern Standard Time. You cannot rely on getdate to handle arbitrary time zone abbreviations; use numeric abbreviations like `-0500' instead. */ static table const time_zone_table[] = { { "GMT", tZONE, HOUR ( 0) }, /* Greenwich Mean */ { "UT", tZONE, HOUR ( 0) }, /* Universal (Coordinated) */ { "UTC", tZONE, HOUR ( 0) }, { "WET", tZONE, HOUR ( 0) }, /* Western European */ { "WEST", tDAYZONE, HOUR ( 0) }, /* Western European Summer */ { "BST", tDAYZONE, HOUR ( 0) }, /* British Summer */ { "ART", tZONE, -HOUR ( 3) }, /* Argentina */ { "BRT", tZONE, -HOUR ( 3) }, /* Brazil */ { "BRST", tDAYZONE, -HOUR ( 3) }, /* Brazil Summer */ { "NST", tZONE, -(HOUR ( 3) + 30) }, /* Newfoundland Standard */ { "NDT", tDAYZONE,-(HOUR ( 3) + 30) }, /* Newfoundland Daylight */ { "AST", tZONE, -HOUR ( 4) }, /* Atlantic Standard */ { "ADT", tDAYZONE, -HOUR ( 4) }, /* Atlantic Daylight */ { "CLT", tZONE, -HOUR ( 4) }, /* Chile */ { "CLST", tDAYZONE, -HOUR ( 4) }, /* Chile Summer */ { "EST", tZONE, -HOUR ( 5) }, /* Eastern Standard */ { "EDT", tDAYZONE, -HOUR ( 5) }, /* Eastern Daylight */ { "CST", tZONE, -HOUR ( 6) }, /* Central Standard */ { "CDT", tDAYZONE, -HOUR ( 6) }, /* Central Daylight */ { "MST", tZONE, -HOUR ( 7) }, /* Mountain Standard */ { "MDT", tDAYZONE, -HOUR ( 7) }, /* Mountain Daylight */ { "PST", tZONE, -HOUR ( 8) }, /* Pacific Standard */ { "PDT", tDAYZONE, -HOUR ( 8) }, /* Pacific Daylight */ { "AKST", tZONE, -HOUR ( 9) }, /* Alaska Standard */ { "AKDT", tDAYZONE, -HOUR ( 9) }, /* Alaska Daylight */ { "HST", tZONE, -HOUR (10) }, /* Hawaii Standard */ { "HAST", tZONE, -HOUR (10) }, /* Hawaii-Aleutian Standard */ { "HADT", tDAYZONE, -HOUR (10) }, /* Hawaii-Aleutian Daylight */ { "SST", tZONE, -HOUR (12) }, /* Samoa Standard */ { "WAT", tZONE, HOUR ( 1) }, /* West Africa */ { "CET", tZONE, HOUR ( 1) }, /* Central European */ { "CEST", tDAYZONE, HOUR ( 1) }, /* Central European Summer */ { "MET", tZONE, HOUR ( 1) }, /* Middle European */ { "MEZ", tZONE, HOUR ( 1) }, /* Middle European */ { "MEST", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */ { "MESZ", tDAYZONE, HOUR ( 1) }, /* Middle European Summer */ { "EET", tZONE, HOUR ( 2) }, /* Eastern European */ { "EEST", tDAYZONE, HOUR ( 2) }, /* Eastern European Summer */ { "CAT", tZONE, HOUR ( 2) }, /* Central Africa */ { "SAST", tZONE, HOUR ( 2) }, /* South Africa Standard */ { "EAT", tZONE, HOUR ( 3) }, /* East Africa */ { "MSK", tZONE, HOUR ( 3) }, /* Moscow */ { "MSD", tDAYZONE, HOUR ( 3) }, /* Moscow Daylight */ { "IST", tZONE, (HOUR ( 5) + 30) }, /* India Standard */ { "SGT", tZONE, HOUR ( 8) }, /* Singapore */ { "KST", tZONE, HOUR ( 9) }, /* Korea Standard */ { "JST", tZONE, HOUR ( 9) }, /* Japan Standard */ { "GST", tZONE, HOUR (10) }, /* Guam Standard */ { "NZST", tZONE, HOUR (12) }, /* New Zealand Standard */ { "NZDT", tDAYZONE, HOUR (12) }, /* New Zealand Daylight */ { 0, 0, 0 } }; /* Military time zone table. */ static table const military_table[] = { { "A", tZONE, -HOUR ( 1) }, { "B", tZONE, -HOUR ( 2) }, { "C", tZONE, -HOUR ( 3) }, { "D", tZONE, -HOUR ( 4) }, { "E", tZONE, -HOUR ( 5) }, { "F", tZONE, -HOUR ( 6) }, { "G", tZONE, -HOUR ( 7) }, { "H", tZONE, -HOUR ( 8) }, { "I", tZONE, -HOUR ( 9) }, { "K", tZONE, -HOUR (10) }, { "L", tZONE, -HOUR (11) }, { "M", tZONE, -HOUR (12) }, { "N", tZONE, HOUR ( 1) }, { "O", tZONE, HOUR ( 2) }, { "P", tZONE, HOUR ( 3) }, { "Q", tZONE, HOUR ( 4) }, { "R", tZONE, HOUR ( 5) }, { "S", tZONE, HOUR ( 6) }, { "T", tZONE, HOUR ( 7) }, { "U", tZONE, HOUR ( 8) }, { "V", tZONE, HOUR ( 9) }, { "W", tZONE, HOUR (10) }, { "X", tZONE, HOUR (11) }, { "Y", tZONE, HOUR (12) }, { "Z", tZONE, HOUR ( 0) }, { 0, 0, 0 } }; static int to_hour (long int hours, int meridian) { switch (meridian) { case MER24: return 0 <= hours && hours < 24 ? hours : -1; case MERam: return 0 < hours && hours < 12 ? hours : hours == 12 ? 0 : -1; case MERpm: return 0 < hours && hours < 12 ? hours + 12 : hours == 12 ? 12 : -1; default: abort (); } /* NOTREACHED */ } static long int to_year (textint textyear) { long int year = textyear.value; if (year < 0) year = -year; /* XPG4 suggests that years 00-68 map to 2000-2068, and years 69-99 map to 1969-1999. */ else if (textyear.digits == 2) year += year < 69 ? 2000 : 1900; return year; } static table const * lookup_zone (parser_control const *pc, char const *name) { table const *tp; /* Try local zone abbreviations first; they're more likely to be right. */ for (tp = pc->local_time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; for (tp = time_zone_table; tp->name; tp++) if (strcmp (name, tp->name) == 0) return tp; return 0; } #if ! HAVE_TM_GMTOFF /* Yield the difference between *A and *B, measured in seconds, ignoring leap seconds. The body of this function is taken directly from the GNU C Library; see src/strftime.c. */ static long int tm_diff (struct tm const *a, struct tm const *b) { /* Compute intervening leap days correctly even if year is negative. Take care to avoid int overflow in leap day calculations. */ int a4 = (a->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (a->tm_year & 3); int b4 = (b->tm_year >> 2) + (TM_YEAR_BASE >> 2) - ! (b->tm_year & 3); int a100 = a4 / 25 - (a4 % 25 < 0); int b100 = b4 / 25 - (b4 % 25 < 0); int a400 = a100 >> 2; int b400 = b100 >> 2; int intervening_leap_days = (a4 - b4) - (a100 - b100) + (a400 - b400); long int ayear = a->tm_year; long int years = ayear - b->tm_year; long int days = (365 * years + intervening_leap_days + (a->tm_yday - b->tm_yday)); return (60 * (60 * (24 * days + (a->tm_hour - b->tm_hour)) + (a->tm_min - b->tm_min)) + (a->tm_sec - b->tm_sec)); } #endif /* ! HAVE_TM_GMTOFF */ static table const * lookup_word (parser_control const *pc, char *word) { char *p; char *q; size_t wordlen; table const *tp; bool period_found; bool abbrev; /* Make it uppercase. */ for (p = word; *p; p++) { unsigned char ch = *p; if (ISLOWER (ch)) *p = toupper (ch); } for (tp = meridian_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* See if we have an abbreviation for a month. */ wordlen = strlen (word); abbrev = wordlen == 3 || (wordlen == 4 && word[3] == '.'); for (tp = month_and_day_table; tp->name; tp++) if ((abbrev ? strncmp (word, tp->name, 3) : strcmp (word, tp->name)) == 0) return tp; if ((tp = lookup_zone (pc, word))) return tp; if (strcmp (word, dst_table[0].name) == 0) return dst_table; for (tp = time_units_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* Strip off any plural and try the units table again. */ if (word[wordlen - 1] == 'S') { word[wordlen - 1] = '\0'; for (tp = time_units_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; word[wordlen - 1] = 'S'; /* For "this" in relative_time_table. */ } for (tp = relative_time_table; tp->name; tp++) if (strcmp (word, tp->name) == 0) return tp; /* Military time zones. */ if (wordlen == 1) for (tp = military_table; tp->name; tp++) if (word[0] == tp->name[0]) return tp; /* Drop out any periods and try the time zone table again. */ for (period_found = false, p = q = word; (*p = *q); q++) if (*q == '.') period_found = true; else p++; if (period_found && (tp = lookup_zone (pc, word))) return tp; return 0; } static int yylex (YYSTYPE *lvalp, parser_control *pc) { unsigned char c; size_t count; for (;;) { while (c = *pc->input, ISSPACE (c)) pc->input++; if (ISDIGIT (c) || c == '-' || c == '+') { char const *p; int sign; unsigned long int value; if (c == '-' || c == '+') { sign = c == '-' ? -1 : 1; while (c = *++pc->input, ISSPACE (c)) continue; if (! ISDIGIT (c)) /* skip the '-' sign */ continue; } else sign = 0; p = pc->input; for (value = 0; ; value *= 10) { unsigned long int value1 = value + (c - '0'); if (value1 < value) return '?'; value = value1; c = *++p; if (! ISDIGIT (c)) break; if (ULONG_MAX / 10 < value) return '?'; } if ((c == '.' || c == ',') && ISDIGIT (p[1])) { time_t s; int ns; int digits; unsigned long int value1; /* Check for overflow when converting value to time_t. */ if (sign < 0) { s = - value; if (0 < s) return '?'; value1 = -s; } else { s = value; if (s < 0) return '?'; value1 = s; } if (value != value1) return '?'; /* Accumulate fraction, to ns precision. */ p++; ns = *p++ - '0'; for (digits = 2; digits <= LOG10_BILLION; digits++) { ns *= 10; if (ISDIGIT (*p)) ns += *p++ - '0'; } /* Skip excess digits, truncating toward -Infinity. */ if (sign < 0) for (; ISDIGIT (*p); p++) if (*p != '0') { ns++; break; } while (ISDIGIT (*p)) p++; /* Adjust to the timespec convention, which is that tv_nsec is always a positive offset even if tv_sec is negative. */ if (sign < 0 && ns) { s--; if (! (s < 0)) return '?'; ns = BILLION - ns; } lvalp->timespec.tv_sec = s; lvalp->timespec.tv_nsec = ns; pc->input = p; return sign ? tSDECIMAL_NUMBER : tUDECIMAL_NUMBER; } else { if (sign < 0) { lvalp->textintval.value = - value; if (0 < lvalp->textintval.value) return '?'; } else { lvalp->textintval.value = value; if (lvalp->textintval.value < 0) return '?'; } lvalp->textintval.digits = p - pc->input; pc->input = p; return sign ? tSNUMBER : tUNUMBER; } } if (ISALPHA (c)) { char buff[20]; char *p = buff; table const *tp; do { if (p < buff + sizeof buff - 1) *p++ = c; c = *++pc->input; } while (ISALPHA (c) || c == '.'); *p = '\0'; tp = lookup_word (pc, buff); if (! tp) return '?'; lvalp->intval = tp->value; return tp->type; } if (c != '(') return *pc->input++; count = 0; do { c = *pc->input++; if (c == '\0') return c; if (c == '(') count++; else if (c == ')') count--; } while (count != 0); } } /* Do nothing if the parser reports an error. */ static int yyerror (char *s ATTRIBUTE_UNUSED) { return 0; } /* Parse a date/time string, storing the resulting time value into *RESULT. The string itself is pointed to by P. Return true if successful. P can be an incomplete or relative time specification; if so, use *NOW as the basis for the returned time. */ bool get_date (struct timespec *result, char const *p, struct timespec const *now) { time_t Start; long int Start_ns; struct tm const *tmp; struct tm tm; struct tm tm0; parser_control pc; struct timespec gettime_buffer; if (! now) { if (gettime (&gettime_buffer) != 0) return false; now = &gettime_buffer; } Start = now->tv_sec; Start_ns = now->tv_nsec; tmp = localtime (&now->tv_sec); if (! tmp) return false; pc.input = p; pc.year.value = tmp->tm_year; pc.year.value += TM_YEAR_BASE; pc.year.digits = 4; pc.month = tmp->tm_mon + 1; pc.day = tmp->tm_mday; pc.hour = tmp->tm_hour; pc.minutes = tmp->tm_min; pc.seconds.tv_sec = tmp->tm_sec; pc.seconds.tv_nsec = Start_ns; tm.tm_isdst = tmp->tm_isdst; pc.meridian = MER24; pc.rel_ns = 0; pc.rel_seconds = 0; pc.rel_minutes = 0; pc.rel_hour = 0; pc.rel_day = 0; pc.rel_month = 0; pc.rel_year = 0; pc.timespec_seen = false; pc.dates_seen = 0; pc.days_seen = 0; pc.rels_seen = 0; pc.times_seen = 0; pc.local_zones_seen = 0; pc.zones_seen = 0; #if HAVE_STRUCT_TM_TM_ZONE pc.local_time_zone_table[0].name = tmp->tm_zone; pc.local_time_zone_table[0].type = tLOCAL_ZONE; pc.local_time_zone_table[0].value = tmp->tm_isdst; pc.local_time_zone_table[1].name = 0; /* Probe the names used in the next three calendar quarters, looking for a tm_isdst different from the one we already have. */ { int quarter; for (quarter = 1; quarter <= 3; quarter++) { time_t probe = Start + quarter * (90 * 24 * 60 * 60); struct tm const *probe_tm = localtime (&probe); if (probe_tm && probe_tm->tm_zone && probe_tm->tm_isdst != pc.local_time_zone_table[0].value) { { pc.local_time_zone_table[1].name = probe_tm->tm_zone; pc.local_time_zone_table[1].type = tLOCAL_ZONE; pc.local_time_zone_table[1].value = probe_tm->tm_isdst; pc.local_time_zone_table[2].name = 0; } break; } } } #else #if HAVE_TZNAME { # ifndef tzname extern char *tzname[]; # endif int i; for (i = 0; i < 2; i++) { pc.local_time_zone_table[i].name = tzname[i]; pc.local_time_zone_table[i].type = tLOCAL_ZONE; pc.local_time_zone_table[i].value = i; } pc.local_time_zone_table[i].name = 0; } #else pc.local_time_zone_table[0].name = 0; #endif #endif if (pc.local_time_zone_table[0].name && pc.local_time_zone_table[1].name && ! strcmp (pc.local_time_zone_table[0].name, pc.local_time_zone_table[1].name)) { /* This locale uses the same abbrevation for standard and daylight times. So if we see that abbreviation, we don't know whether it's daylight time. */ pc.local_time_zone_table[0].value = -1; pc.local_time_zone_table[1].name = 0; } if (yyparse (&pc) != 0) return false; if (pc.timespec_seen) { *result = pc.seconds; return true; } if (1 < pc.times_seen || 1 < pc.dates_seen || 1 < pc.days_seen || 1 < (pc.local_zones_seen + pc.zones_seen) || (pc.local_zones_seen && 1 < pc.local_isdst)) return false; tm.tm_year = to_year (pc.year) - TM_YEAR_BASE + pc.rel_year; tm.tm_mon = pc.month - 1 + pc.rel_month; tm.tm_mday = pc.day + pc.rel_day; if (pc.times_seen || (pc.rels_seen && ! pc.dates_seen && ! pc.days_seen)) { tm.tm_hour = to_hour (pc.hour, pc.meridian); if (tm.tm_hour < 0) return false; tm.tm_min = pc.minutes; tm.tm_sec = pc.seconds.tv_sec; } else { tm.tm_hour = tm.tm_min = tm.tm_sec = 0; pc.seconds.tv_nsec = 0; } /* Let mktime deduce tm_isdst if we have an absolute time stamp, or if the relative time stamp mentions days, months, or years. */ if (pc.dates_seen | pc.days_seen | pc.times_seen | pc.rel_day | pc.rel_month | pc.rel_year) tm.tm_isdst = -1; /* But if the input explicitly specifies local time with or without DST, give mktime that information. */ if (pc.local_zones_seen) tm.tm_isdst = pc.local_isdst; tm0 = tm; Start = mktime (&tm); if (Start == (time_t) -1) { /* Guard against falsely reporting errors near the time_t boundaries when parsing times in other time zones. For example, if the min time_t value is 1970-01-01 00:00:00 UTC and we are 8 hours ahead of UTC, then the min localtime value is 1970-01-01 08:00:00; if we apply mktime to 1970-01-01 00:00:00 we will get an error, so we apply mktime to 1970-01-02 08:00:00 instead and adjust the time zone by 24 hours to compensate. This algorithm assumes that there is no DST transition within a day of the time_t boundaries. */ if (pc.zones_seen) { tm = tm0; if (tm.tm_year <= EPOCH_YEAR - TM_YEAR_BASE) { tm.tm_mday++; pc.time_zone += 24 * 60; } else { tm.tm_mday--; pc.time_zone -= 24 * 60; } Start = mktime (&tm); } if (Start == (time_t) -1) return false; } if (pc.days_seen && ! pc.dates_seen) { tm.tm_mday += ((pc.day_number - tm.tm_wday + 7) % 7 + 7 * (pc.day_ordinal - (0 < pc.day_ordinal))); tm.tm_isdst = -1; Start = mktime (&tm); if (Start == (time_t) -1) return false; } if (pc.zones_seen) { long int delta = pc.time_zone * 60; time_t t1; #ifdef HAVE_TM_GMTOFF delta -= tm.tm_gmtoff; #else time_t t = Start; struct tm const *gmt = gmtime (&t); if (! gmt) return false; delta -= tm_diff (&tm, gmt); #endif t1 = Start - delta; if ((Start < t1) != (delta < 0)) return false; /* time_t overflow */ Start = t1; } /* Add relative hours, minutes, and seconds. Ignore leap seconds; i.e. "+ 10 minutes" means 600 seconds, even if one of them is a leap second. Typically this is not what the user wants, but it's too hard to do it the other way, because the time zone indicator must be applied before relative times, and if mktime is applied again the time zone will be lost. */ { long int sum_ns = pc.seconds.tv_nsec + pc.rel_ns; long int normalized_ns = (sum_ns % BILLION + BILLION) % BILLION; time_t t0 = Start; long int d1 = 60 * 60 * pc.rel_hour; time_t t1 = t0 + d1; long int d2 = 60 * pc.rel_minutes; time_t t2 = t1 + d2; long int d3 = pc.rel_seconds; time_t t3 = t2 + d3; long int d4 = (sum_ns - normalized_ns) / BILLION; time_t t4 = t3 + d4; if ((d1 / (60 * 60) ^ pc.rel_hour) | (d2 / 60 ^ pc.rel_minutes) | ((t1 < t0) ^ (d1 < 0)) | ((t2 < t1) ^ (d2 < 0)) | ((t3 < t2) ^ (d3 < 0)) | ((t4 < t3) ^ (d4 < 0))) return false; result->tv_sec = t4; result->tv_nsec = normalized_ns; return true; } } #if TEST #include int main (int ac, char **av) { char buff[BUFSIZ]; printf ("Enter date, or blank line to exit.\n\t> "); fflush (stdout); buff[BUFSIZ - 1] = 0; while (fgets (buff, BUFSIZ - 1, stdin) && buff[0]) { struct timespec d; struct tm const *tm; if (! get_date (&d, buff, NULL)) printf ("Bad format - couldn't convert.\n"); else if (! (tm = localtime (&d.tv_sec))) { long int sec = d.tv_sec; printf ("localtime (%ld) failed\n", sec); } else { int ns = d.tv_nsec; printf ("%04ld-%02d-%02d %02d:%02d:%02d.%09d\n", tm->tm_year + 1900L, tm->tm_mon + 1, tm->tm_mday, tm->tm_hour, tm->tm_min, tm->tm_sec, ns); } printf ("\t> "); fflush (stdout); } return 0; } #endif /* defined TEST */