X-Git-Url: http://erislabs.net/gitweb/?a=blobdiff_plain;f=regex.c;h=711f7c7afa9fe847b52e5f6f3442795db00c143d;hb=7540e1406f34e8083740a2954fd2e97b9878e5e6;hp=5d11a635514a25c6b4542e2a860e8067718a4bb4;hpb=024d33aa2c0b84b6a15216a7c321f3e26f233e3f;p=gnulib.git diff --git a/regex.c b/regex.c index 5d11a6355..711f7c7af 100644 --- a/regex.c +++ b/regex.c @@ -1,7 +1,6043 @@ -/* Extended regular expression matching and search library, - version 0.12. - (Implements POSIX draft P10003.2/D11.2, except for +/* Extended regular expression matching and search library, version + 0.12. (Implements POSIX draft P10003.2/D11.2, except for internationalization features.) - Copyright (C) 1993, 1994, 1995 Free Software Foundation, Inc. + Copyright (C) 1993,94,95,96,97,98,2000 Free Software Foundation, Inc. + This program is free software; you can redistribute it and/or modify + it under the terms of the GNU General Public License as published by + the Free Software Foundation; either version 2, or (at your option) + any later version. + + This program is distributed in the hope that it will be useful, + but WITHOUT ANY WARRANTY; without even the implied warranty of + MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + GNU General Public License for more details. + + You should have received a copy of the GNU General Public License + along with this program; if not, write to the Free Software + Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, + USA. */ + +/* TODO: + - detect nasty infinite loops like "\\(\\)+?ab" when matching "ac". + - use `keep_string' more often than just .*\n. + - structure the opcode space into opcode+flag. + - merge with glic's regex.[ch] + + That's it for now -sm */ + +/* AIX requires this to be the first thing in the file. */ +#if defined (_AIX) && !defined (REGEX_MALLOC) + #pragma alloca +#endif + +#undef _GNU_SOURCE +#define _GNU_SOURCE + +#ifdef emacs +/* Converts the pointer to the char to BEG-based offset from the start. */ +#define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d)) +#define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object))) +#else +#define PTR_TO_OFFSET(d) 0 +#endif + +#ifdef HAVE_CONFIG_H +#include +#endif + +/* We need this for `regex.h', and perhaps for the Emacs include files. */ +#include + +/* This is for other GNU distributions with internationalized messages. */ +#if HAVE_LIBINTL_H || defined (_LIBC) +# include +#else +# define gettext(msgid) (msgid) +#endif + +#ifndef gettext_noop +/* This define is so xgettext can find the internationalizable + strings. */ +#define gettext_noop(String) String +#endif + +/* The `emacs' switch turns on certain matching commands + that make sense only in Emacs. */ +#ifdef emacs + +#include "lisp.h" +#include "buffer.h" + +/* Make syntax table lookup grant data in gl_state. */ +#define SYNTAX_ENTRY_VIA_PROPERTY + +#include "syntax.h" +#include "charset.h" +#include "category.h" + +#define malloc xmalloc +#define realloc xrealloc +#define free xfree + +#define RE_STRING_CHAR(p, s) \ + (multibyte ? (STRING_CHAR (p, s)) : (*(p))) + +#else /* not emacs */ + +/* If we are not linking with Emacs proper, + we can't use the relocating allocator + even if config.h says that we can. */ +#undef REL_ALLOC + +#if defined (STDC_HEADERS) || defined (_LIBC) +#include +#else +char *malloc (); +char *realloc (); +#endif + +/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow. + If nothing else has been done, use the method below. */ +#ifdef INHIBIT_STRING_HEADER +#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY)) +#if !defined (bzero) && !defined (bcopy) +#undef INHIBIT_STRING_HEADER +#endif +#endif +#endif + +/* This is the normal way of making sure we have a bcopy and a bzero. + This is used in most programs--a few other programs avoid this + by defining INHIBIT_STRING_HEADER. */ +#ifndef INHIBIT_STRING_HEADER +#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC) +#include +#ifndef bcmp +#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n)) +#endif +#ifndef bcopy +#define bcopy(s, d, n) memcpy ((d), (s), (n)) +#endif +#ifndef bzero +#define bzero(s, n) memset ((s), 0, (n)) +#endif +#else +#include +#endif +#endif + +/* Define the syntax stuff for \<, \>, etc. */ + +/* This must be nonzero for the wordchar and notwordchar pattern + commands in re_match_2. */ +#ifndef Sword +#define Sword 1 +#endif + +#ifdef SWITCH_ENUM_BUG +#define SWITCH_ENUM_CAST(x) ((int)(x)) +#else +#define SWITCH_ENUM_CAST(x) (x) +#endif + +#ifdef SYNTAX_TABLE + +extern char *re_syntax_table; + +#else /* not SYNTAX_TABLE */ + +/* How many characters in the character set. */ +#define CHAR_SET_SIZE 256 + +static char re_syntax_table[CHAR_SET_SIZE]; + +static void +init_syntax_once () +{ + register int c; + static int done = 0; + + if (done) + return; + + bzero (re_syntax_table, sizeof re_syntax_table); + + for (c = 'a'; c <= 'z'; c++) + re_syntax_table[c] = Sword; + + for (c = 'A'; c <= 'Z'; c++) + re_syntax_table[c] = Sword; + + for (c = '0'; c <= '9'; c++) + re_syntax_table[c] = Sword; + + re_syntax_table['_'] = Sword; + + done = 1; +} + +#endif /* not SYNTAX_TABLE */ + +#define SYNTAX(c) re_syntax_table[c] + +/* Dummy macros for non-Emacs environments. */ +#define BASE_LEADING_CODE_P(c) (0) +#define WORD_BOUNDARY_P(c1, c2) (0) +#define CHAR_HEAD_P(p) (1) +#define SINGLE_BYTE_CHAR_P(c) (1) +#define SAME_CHARSET_P(c1, c2) (1) +#define MULTIBYTE_FORM_LENGTH(p, s) (1) +#define STRING_CHAR(p, s) (*(p)) +#define RE_STRING_CHAR STRING_CHAR +#define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p)) +#define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \ + (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1))) +#endif /* not emacs */ + +#ifndef RE_TRANSLATE +#define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C]) +#define RE_TRANSLATE_P(TBL) (TBL) +#endif + +/* Get the interface, including the syntax bits. */ +#include "regex.h" + +/* isalpha etc. are used for the character classes. */ +#include + +#ifdef emacs + +/* 1 if C is an ASCII character. */ +#define IS_REAL_ASCII(c) ((c) < 0200) + +/* 1 if C is a unibyte character. */ +#define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c))) + +/* The Emacs definitions should not be directly affected by locales. */ + +/* In Emacs, these are only used for single-byte characters. */ +#define ISDIGIT(c) ((c) >= '0' && (c) <= '9') +#define ISCNTRL(c) ((c) < ' ') +#define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \ + || ((c) >= 'a' && (c) <= 'f') \ + || ((c) >= 'A' && (c) <= 'F')) + +/* This is only used for single-byte characters. */ +#define ISBLANK(c) ((c) == ' ' || (c) == '\t') + +/* The rest must handle multibyte characters. */ + +#define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \ + ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \ + : 1) + +#define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \ + ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \ + : 1) + +#define ISALNUM(c) (IS_REAL_ASCII (c) \ + ? (((c) >= 'a' && (c) <= 'z') \ + || ((c) >= 'A' && (c) <= 'Z') \ + || ((c) >= '0' && (c) <= '9')) \ + : SYNTAX (c) == Sword) + +#define ISALPHA(c) (IS_REAL_ASCII (c) \ + ? (((c) >= 'a' && (c) <= 'z') \ + || ((c) >= 'A' && (c) <= 'Z')) \ + : SYNTAX (c) == Sword) + +#define ISLOWER(c) (LOWERCASEP (c)) + +#define ISPUNCT(c) (IS_REAL_ASCII (c) \ + ? ((c) > ' ' && (c) < 0177 \ + && !(((c) >= 'a' && (c) <= 'z') \ + || ((c) >= 'A' && (c) <= 'Z') \ + || ((c) >= '0' && (c) <= '9'))) \ + : SYNTAX (c) != Sword) + +#define ISSPACE(c) (SYNTAX (c) == Swhitespace) + +#define ISUPPER(c) (UPPERCASEP (c)) + +#define ISWORD(c) (SYNTAX (c) == Sword) + +#else /* not emacs */ + +/* Jim Meyering writes: + + "... Some ctype macros are valid only for character codes that + isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when + using /bin/cc or gcc but without giving an ansi option). So, all + ctype uses should be through macros like ISPRINT... If + STDC_HEADERS is defined, then autoconf has verified that the ctype + macros don't need to be guarded with references to isascii. ... + Defining isascii to 1 should let any compiler worth its salt + eliminate the && through constant folding." */ + +#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII)) +#define ISASCII(c) 1 +#else +#define ISASCII(c) isascii(c) +#endif + +/* 1 if C is an ASCII character. */ +#define IS_REAL_ASCII(c) ((c) < 0200) + +/* This distinction is not meaningful, except in Emacs. */ +#define ISUNIBYTE(c) 1 + +#define ISDIGIT(c) (ISASCII (c) && isdigit (c)) +#define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) +#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) + +#ifdef isblank +#define ISBLANK(c) (ISASCII (c) && isblank (c)) +#else +#define ISBLANK(c) ((c) == ' ' || (c) == '\t') +#endif +#ifdef isgraph +#define ISGRAPH(c) (ISASCII (c) && isgraph (c)) +#else +#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c)) +#endif + +#define ISPRINT(c) (ISASCII (c) && isprint (c)) +#define ISDIGIT(c) (ISASCII (c) && isdigit (c)) +#define ISALNUM(c) (ISASCII (c) && isalnum (c)) +#define ISALPHA(c) (ISASCII (c) && isalpha (c)) +#define ISCNTRL(c) (ISASCII (c) && iscntrl (c)) +#define ISLOWER(c) (ISASCII (c) && islower (c)) +#define ISPUNCT(c) (ISASCII (c) && ispunct (c)) +#define ISSPACE(c) (ISASCII (c) && isspace (c)) +#define ISUPPER(c) (ISASCII (c) && isupper (c)) +#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c)) + +#define ISWORD(c) ISALPHA(c) + +#endif /* not emacs */ + +#ifndef NULL +#define NULL (void *)0 +#endif + +/* We remove any previous definition of `SIGN_EXTEND_CHAR', + since ours (we hope) works properly with all combinations of + machines, compilers, `char' and `unsigned char' argument types. + (Per Bothner suggested the basic approach.) */ +#undef SIGN_EXTEND_CHAR +#if __STDC__ +#define SIGN_EXTEND_CHAR(c) ((signed char) (c)) +#else /* not __STDC__ */ +/* As in Harbison and Steele. */ +#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128) +#endif + +/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we + use `alloca' instead of `malloc'. This is because using malloc in + re_search* or re_match* could cause memory leaks when C-g is used in + Emacs; also, malloc is slower and causes storage fragmentation. On + the other hand, malloc is more portable, and easier to debug. + + Because we sometimes use alloca, some routines have to be macros, + not functions -- `alloca'-allocated space disappears at the end of the + function it is called in. */ + +#ifdef REGEX_MALLOC + +#define REGEX_ALLOCATE malloc +#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize) +#define REGEX_FREE free + +#else /* not REGEX_MALLOC */ + +/* Emacs already defines alloca, sometimes. */ +#ifndef alloca + +/* Make alloca work the best possible way. */ +#ifdef __GNUC__ +#define alloca __builtin_alloca +#else /* not __GNUC__ */ +#if HAVE_ALLOCA_H +#include +#else /* not __GNUC__ or HAVE_ALLOCA_H */ +#if 0 /* It is a bad idea to declare alloca. We always cast the result. */ +#ifndef _AIX /* Already did AIX, up at the top. */ +char *alloca (); +#endif /* not _AIX */ +#endif +#endif /* not HAVE_ALLOCA_H */ +#endif /* not __GNUC__ */ + +#endif /* not alloca */ + +#define REGEX_ALLOCATE alloca + +/* Assumes a `char *destination' variable. */ +#define REGEX_REALLOCATE(source, osize, nsize) \ + (destination = (char *) alloca (nsize), \ + bcopy (source, destination, osize), \ + destination) + +/* No need to do anything to free, after alloca. */ +#define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */ + +#endif /* not REGEX_MALLOC */ + +/* Define how to allocate the failure stack. */ + +#if defined (REL_ALLOC) && defined (REGEX_MALLOC) + +#define REGEX_ALLOCATE_STACK(size) \ + r_alloc (&failure_stack_ptr, (size)) +#define REGEX_REALLOCATE_STACK(source, osize, nsize) \ + r_re_alloc (&failure_stack_ptr, (nsize)) +#define REGEX_FREE_STACK(ptr) \ + r_alloc_free (&failure_stack_ptr) + +#else /* not using relocating allocator */ + +#ifdef REGEX_MALLOC + +#define REGEX_ALLOCATE_STACK malloc +#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize) +#define REGEX_FREE_STACK free + +#else /* not REGEX_MALLOC */ + +#define REGEX_ALLOCATE_STACK alloca + +#define REGEX_REALLOCATE_STACK(source, osize, nsize) \ + REGEX_REALLOCATE (source, osize, nsize) +/* No need to explicitly free anything. */ +#define REGEX_FREE_STACK(arg) + +#endif /* not REGEX_MALLOC */ +#endif /* not using relocating allocator */ + + +/* True if `size1' is non-NULL and PTR is pointing anywhere inside + `string1' or just past its end. This works if PTR is NULL, which is + a good thing. */ +#define FIRST_STRING_P(ptr) \ + (size1 && string1 <= (ptr) && (ptr) <= string1 + size1) + +/* (Re)Allocate N items of type T using malloc, or fail. */ +#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t))) +#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t))) +#define RETALLOC_IF(addr, n, t) \ + if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t) +#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t))) + +#define BYTEWIDTH 8 /* In bits. */ + +#define STREQ(s1, s2) ((strcmp (s1, s2) == 0)) + +#undef MAX +#undef MIN +#define MAX(a, b) ((a) > (b) ? (a) : (b)) +#define MIN(a, b) ((a) < (b) ? (a) : (b)) + +/* Type of source-pattern and string chars. */ +typedef const unsigned char re_char; + +typedef char boolean; +#define false 0 +#define true 1 + +static int re_match_2_internal (); + +/* These are the command codes that appear in compiled regular + expressions. Some opcodes are followed by argument bytes. A + command code can specify any interpretation whatsoever for its + arguments. Zero bytes may appear in the compiled regular expression. */ + +typedef enum +{ + no_op = 0, + + /* Succeed right away--no more backtracking. */ + succeed, + + /* Followed by one byte giving n, then by n literal bytes. */ + exactn, + + /* Matches any (more or less) character. */ + anychar, + + /* Matches any one char belonging to specified set. First + following byte is number of bitmap bytes. Then come bytes + for a bitmap saying which chars are in. Bits in each byte + are ordered low-bit-first. A character is in the set if its + bit is 1. A character too large to have a bit in the map is + automatically not in the set. + + If the length byte has the 0x80 bit set, then that stuff + is followed by a range table: + 2 bytes of flags for character sets (low 8 bits, high 8 bits) + See RANGE_TABLE_WORK_BITS below. + 2 bytes, the number of pairs that follow + pairs, each 2 multibyte characters, + each multibyte character represented as 3 bytes. */ + charset, + + /* Same parameters as charset, but match any character that is + not one of those specified. */ + charset_not, + + /* Start remembering the text that is matched, for storing in a + register. Followed by one byte with the register number, in + the range 0 to one less than the pattern buffer's re_nsub + field. */ + start_memory, + + /* Stop remembering the text that is matched and store it in a + memory register. Followed by one byte with the register + number, in the range 0 to one less than `re_nsub' in the + pattern buffer. */ + stop_memory, + + /* Match a duplicate of something remembered. Followed by one + byte containing the register number. */ + duplicate, + + /* Fail unless at beginning of line. */ + begline, + + /* Fail unless at end of line. */ + endline, + + /* Succeeds if at beginning of buffer (if emacs) or at beginning + of string to be matched (if not). */ + begbuf, + + /* Analogously, for end of buffer/string. */ + endbuf, + + /* Followed by two byte relative address to which to jump. */ + jump, + + /* Followed by two-byte relative address of place to resume at + in case of failure. */ + on_failure_jump, + + /* Like on_failure_jump, but pushes a placeholder instead of the + current string position when executed. */ + on_failure_keep_string_jump, + + /* Just like `on_failure_jump', except that it checks that we + don't get stuck in an infinite loop (matching an empty string + indefinitely). */ + on_failure_jump_loop, + + /* A smart `on_failure_jump' used for greedy * and + operators. + It analyses the loop before which it is put and if the + loop does not require backtracking, it changes itself to + `on_failure_keep_string_jump' and short-circuits the loop, + else it just defaults to changing itself into `on_failure_jump'. + It assumes that it is pointing to just past a `jump'. */ + on_failure_jump_smart, + + /* Followed by two-byte relative address and two-byte number n. + After matching N times, jump to the address upon failure. */ + succeed_n, + + /* Followed by two-byte relative address, and two-byte number n. + Jump to the address N times, then fail. */ + jump_n, + + /* Set the following two-byte relative address to the + subsequent two-byte number. The address *includes* the two + bytes of number. */ + set_number_at, + + wordchar, /* Matches any word-constituent character. */ + notwordchar, /* Matches any char that is not a word-constituent. */ + + wordbeg, /* Succeeds if at word beginning. */ + wordend, /* Succeeds if at word end. */ + + wordbound, /* Succeeds if at a word boundary. */ + notwordbound /* Succeeds if not at a word boundary. */ + +#ifdef emacs + ,before_dot, /* Succeeds if before point. */ + at_dot, /* Succeeds if at point. */ + after_dot, /* Succeeds if after point. */ + + /* Matches any character whose syntax is specified. Followed by + a byte which contains a syntax code, e.g., Sword. */ + syntaxspec, + + /* Matches any character whose syntax is not that specified. */ + notsyntaxspec, + + /* Matches any character whose category-set contains the specified + category. The operator is followed by a byte which contains a + category code (mnemonic ASCII character). */ + categoryspec, + + /* Matches any character whose category-set does not contain the + specified category. The operator is followed by a byte which + contains the category code (mnemonic ASCII character). */ + notcategoryspec +#endif /* emacs */ +} re_opcode_t; + +/* Common operations on the compiled pattern. */ + +/* Store NUMBER in two contiguous bytes starting at DESTINATION. */ + +#define STORE_NUMBER(destination, number) \ + do { \ + (destination)[0] = (number) & 0377; \ + (destination)[1] = (number) >> 8; \ + } while (0) + +/* Same as STORE_NUMBER, except increment DESTINATION to + the byte after where the number is stored. Therefore, DESTINATION + must be an lvalue. */ + +#define STORE_NUMBER_AND_INCR(destination, number) \ + do { \ + STORE_NUMBER (destination, number); \ + (destination) += 2; \ + } while (0) + +/* Put into DESTINATION a number stored in two contiguous bytes starting + at SOURCE. */ + +#define EXTRACT_NUMBER(destination, source) \ + do { \ + (destination) = *(source) & 0377; \ + (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \ + } while (0) + +#ifdef DEBUG +static void +extract_number (dest, source) + int *dest; + unsigned char *source; +{ + int temp = SIGN_EXTEND_CHAR (*(source + 1)); + *dest = *source & 0377; + *dest += temp << 8; +} + +#ifndef EXTRACT_MACROS /* To debug the macros. */ +#undef EXTRACT_NUMBER +#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src) +#endif /* not EXTRACT_MACROS */ + +#endif /* DEBUG */ + +/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number. + SOURCE must be an lvalue. */ + +#define EXTRACT_NUMBER_AND_INCR(destination, source) \ + do { \ + EXTRACT_NUMBER (destination, source); \ + (source) += 2; \ + } while (0) + +#ifdef DEBUG +static void +extract_number_and_incr (destination, source) + int *destination; + unsigned char **source; +{ + extract_number (destination, *source); + *source += 2; +} + +#ifndef EXTRACT_MACROS +#undef EXTRACT_NUMBER_AND_INCR +#define EXTRACT_NUMBER_AND_INCR(dest, src) \ + extract_number_and_incr (&dest, &src) +#endif /* not EXTRACT_MACROS */ + +#endif /* DEBUG */ + +/* Store a multibyte character in three contiguous bytes starting + DESTINATION, and increment DESTINATION to the byte after where the + character is stored. Therefore, DESTINATION must be an lvalue. */ + +#define STORE_CHARACTER_AND_INCR(destination, character) \ + do { \ + (destination)[0] = (character) & 0377; \ + (destination)[1] = ((character) >> 8) & 0377; \ + (destination)[2] = (character) >> 16; \ + (destination) += 3; \ + } while (0) + +/* Put into DESTINATION a character stored in three contiguous bytes + starting at SOURCE. */ + +#define EXTRACT_CHARACTER(destination, source) \ + do { \ + (destination) = ((source)[0] \ + | ((source)[1] << 8) \ + | ((source)[2] << 16)); \ + } while (0) + + +/* Macros for charset. */ + +/* Size of bitmap of charset P in bytes. P is a start of charset, + i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */ +#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F) + +/* Nonzero if charset P has range table. */ +#define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80) + +/* Return the address of range table of charset P. But not the start + of table itself, but the before where the number of ranges is + stored. `2 +' means to skip re_opcode_t and size of bitmap, + and the 2 bytes of flags at the start of the range table. */ +#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)]) + +/* Extract the bit flags that start a range table. */ +#define CHARSET_RANGE_TABLE_BITS(p) \ + ((p)[2 + CHARSET_BITMAP_SIZE (p)] \ + + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100) + +/* Test if C is listed in the bitmap of charset P. */ +#define CHARSET_LOOKUP_BITMAP(p, c) \ + ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \ + && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH))) + +/* Return the address of end of RANGE_TABLE. COUNT is number of + ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2' + is start of range and end of range. `* 3' is size of each start + and end. */ +#define CHARSET_RANGE_TABLE_END(range_table, count) \ + ((range_table) + (count) * 2 * 3) + +/* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in. + COUNT is number of ranges in RANGE_TABLE. */ +#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \ + do \ + { \ + int range_start, range_end; \ + unsigned char *p; \ + unsigned char *range_table_end \ + = CHARSET_RANGE_TABLE_END ((range_table), (count)); \ + \ + for (p = (range_table); p < range_table_end; p += 2 * 3) \ + { \ + EXTRACT_CHARACTER (range_start, p); \ + EXTRACT_CHARACTER (range_end, p + 3); \ + \ + if (range_start <= (c) && (c) <= range_end) \ + { \ + (not) = !(not); \ + break; \ + } \ + } \ + } \ + while (0) + +/* Test if C is in range table of CHARSET. The flag NOT is negated if + C is listed in it. */ +#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \ + do \ + { \ + /* Number of ranges in range table. */ \ + int count; \ + unsigned char *range_table = CHARSET_RANGE_TABLE (charset); \ + \ + EXTRACT_NUMBER_AND_INCR (count, range_table); \ + CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \ + } \ + while (0) + +/* If DEBUG is defined, Regex prints many voluminous messages about what + it is doing (if the variable `debug' is nonzero). If linked with the + main program in `iregex.c', you can enter patterns and strings + interactively. And if linked with the main program in `main.c' and + the other test files, you can run the already-written tests. */ + +#ifdef DEBUG + +/* We use standard I/O for debugging. */ +#include + +/* It is useful to test things that ``must'' be true when debugging. */ +#include + +static int debug = -100000; + +#define DEBUG_STATEMENT(e) e +#define DEBUG_PRINT1(x) if (debug > 0) printf (x) +#define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2) +#define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3) +#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4) +#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \ + if (debug > 0) print_partial_compiled_pattern (s, e) +#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \ + if (debug > 0) print_double_string (w, s1, sz1, s2, sz2) + + +/* Print the fastmap in human-readable form. */ + +void +print_fastmap (fastmap) + char *fastmap; +{ + unsigned was_a_range = 0; + unsigned i = 0; + + while (i < (1 << BYTEWIDTH)) + { + if (fastmap[i++]) + { + was_a_range = 0; + putchar (i - 1); + while (i < (1 << BYTEWIDTH) && fastmap[i]) + { + was_a_range = 1; + i++; + } + if (was_a_range) + { + printf ("-"); + putchar (i - 1); + } + } + } + putchar ('\n'); +} + + +/* Print a compiled pattern string in human-readable form, starting at + the START pointer into it and ending just before the pointer END. */ + +void +print_partial_compiled_pattern (start, end) + unsigned char *start; + unsigned char *end; +{ + int mcnt, mcnt2; + unsigned char *p = start; + unsigned char *pend = end; + + if (start == NULL) + { + printf ("(null)\n"); + return; + } + + /* Loop over pattern commands. */ + while (p < pend) + { + printf ("%d:\t", p - start); + + switch ((re_opcode_t) *p++) + { + case no_op: + printf ("/no_op"); + break; + + case succeed: + printf ("/succeed"); + break; + + case exactn: + mcnt = *p++; + printf ("/exactn/%d", mcnt); + do + { + putchar ('/'); + putchar (*p++); + } + while (--mcnt); + break; + + case start_memory: + printf ("/start_memory/%d", *p++); + break; + + case stop_memory: + printf ("/stop_memory/%d", *p++); + break; + + case duplicate: + printf ("/duplicate/%d", *p++); + break; + + case anychar: + printf ("/anychar"); + break; + + case charset: + case charset_not: + { + register int c, last = -100; + register int in_range = 0; + int length = CHARSET_BITMAP_SIZE (p - 1); + int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1); + + printf ("/charset [%s", + (re_opcode_t) *(p - 1) == charset_not ? "^" : ""); + + assert (p + *p < pend); + + for (c = 0; c < 256; c++) + if (c / 8 < length + && (p[1 + (c/8)] & (1 << (c % 8)))) + { + /* Are we starting a range? */ + if (last + 1 == c && ! in_range) + { + putchar ('-'); + in_range = 1; + } + /* Have we broken a range? */ + else if (last + 1 != c && in_range) + { + putchar (last); + in_range = 0; + } + + if (! in_range) + putchar (c); + + last = c; + } + + if (in_range) + putchar (last); + + putchar (']'); + + p += 1 + length; + + if (has_range_table) + { + int count; + printf ("has-range-table"); + + /* ??? Should print the range table; for now, just skip it. */ + p += 2; /* skip range table bits */ + EXTRACT_NUMBER_AND_INCR (count, p); + p = CHARSET_RANGE_TABLE_END (p, count); + } + } + break; + + case begline: + printf ("/begline"); + break; + + case endline: + printf ("/endline"); + break; + + case on_failure_jump: + extract_number_and_incr (&mcnt, &p); + printf ("/on_failure_jump to %d", p + mcnt - start); + break; + + case on_failure_keep_string_jump: + extract_number_and_incr (&mcnt, &p); + printf ("/on_failure_keep_string_jump to %d", p + mcnt - start); + break; + + case on_failure_jump_loop: + extract_number_and_incr (&mcnt, &p); + printf ("/on_failure_jump_loop to %d", p + mcnt - start); + break; + + case on_failure_jump_smart: + extract_number_and_incr (&mcnt, &p); + printf ("/on_failure_jump_smart to %d", p + mcnt - start); + break; + + case jump: + extract_number_and_incr (&mcnt, &p); + printf ("/jump to %d", p + mcnt - start); + break; + + case succeed_n: + extract_number_and_incr (&mcnt, &p); + extract_number_and_incr (&mcnt2, &p); + printf ("/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2); + break; + + case jump_n: + extract_number_and_incr (&mcnt, &p); + extract_number_and_incr (&mcnt2, &p); + printf ("/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2); + break; + + case set_number_at: + extract_number_and_incr (&mcnt, &p); + extract_number_and_incr (&mcnt2, &p); + printf ("/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2); + break; + + case wordbound: + printf ("/wordbound"); + break; + + case notwordbound: + printf ("/notwordbound"); + break; + + case wordbeg: + printf ("/wordbeg"); + break; + + case wordend: + printf ("/wordend"); + +#ifdef emacs + case before_dot: + printf ("/before_dot"); + break; + + case at_dot: + printf ("/at_dot"); + break; + + case after_dot: + printf ("/after_dot"); + break; + + case syntaxspec: + printf ("/syntaxspec"); + mcnt = *p++; + printf ("/%d", mcnt); + break; + + case notsyntaxspec: + printf ("/notsyntaxspec"); + mcnt = *p++; + printf ("/%d", mcnt); + break; +#endif /* emacs */ + + case wordchar: + printf ("/wordchar"); + break; + + case notwordchar: + printf ("/notwordchar"); + break; + + case begbuf: + printf ("/begbuf"); + break; + + case endbuf: + printf ("/endbuf"); + break; + + default: + printf ("?%d", *(p-1)); + } + + putchar ('\n'); + } + + printf ("%d:\tend of pattern.\n", p - start); +} + + +void +print_compiled_pattern (bufp) + struct re_pattern_buffer *bufp; +{ + unsigned char *buffer = bufp->buffer; + + print_partial_compiled_pattern (buffer, buffer + bufp->used); + printf ("%ld bytes used/%ld bytes allocated.\n", bufp->used, bufp->allocated); + + if (bufp->fastmap_accurate && bufp->fastmap) + { + printf ("fastmap: "); + print_fastmap (bufp->fastmap); + } + + printf ("re_nsub: %d\t", bufp->re_nsub); + printf ("regs_alloc: %d\t", bufp->regs_allocated); + printf ("can_be_null: %d\t", bufp->can_be_null); + printf ("newline_anchor: %d\n", bufp->newline_anchor); + printf ("no_sub: %d\t", bufp->no_sub); + printf ("not_bol: %d\t", bufp->not_bol); + printf ("not_eol: %d\t", bufp->not_eol); + printf ("syntax: %d\n", bufp->syntax); + fflush (stdout); + /* Perhaps we should print the translate table? */ +} + + +void +print_double_string (where, string1, size1, string2, size2) + re_char *where; + re_char *string1; + re_char *string2; + int size1; + int size2; +{ + unsigned this_char; + + if (where == NULL) + printf ("(null)"); + else + { + if (FIRST_STRING_P (where)) + { + for (this_char = where - string1; this_char < size1; this_char++) + putchar (string1[this_char]); + + where = string2; + } + + for (this_char = where - string2; this_char < size2; this_char++) + putchar (string2[this_char]); + } +} + +#else /* not DEBUG */ + +#undef assert +#define assert(e) + +#define DEBUG_STATEMENT(e) +#define DEBUG_PRINT1(x) +#define DEBUG_PRINT2(x1, x2) +#define DEBUG_PRINT3(x1, x2, x3) +#define DEBUG_PRINT4(x1, x2, x3, x4) +#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) +#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) + +#endif /* not DEBUG */ + +/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can + also be assigned to arbitrarily: each pattern buffer stores its own + syntax, so it can be changed between regex compilations. */ +/* This has no initializer because initialized variables in Emacs + become read-only after dumping. */ +reg_syntax_t re_syntax_options; + + +/* Specify the precise syntax of regexps for compilation. This provides + for compatibility for various utilities which historically have + different, incompatible syntaxes. + + The argument SYNTAX is a bit mask comprised of the various bits + defined in regex.h. We return the old syntax. */ + +reg_syntax_t +re_set_syntax (syntax) + reg_syntax_t syntax; +{ + reg_syntax_t ret = re_syntax_options; + + re_syntax_options = syntax; + return ret; +} + +/* This table gives an error message for each of the error codes listed + in regex.h. Obviously the order here has to be same as there. + POSIX doesn't require that we do anything for REG_NOERROR, + but why not be nice? */ + +static const char *re_error_msgid[] = + { + gettext_noop ("Success"), /* REG_NOERROR */ + gettext_noop ("No match"), /* REG_NOMATCH */ + gettext_noop ("Invalid regular expression"), /* REG_BADPAT */ + gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */ + gettext_noop ("Invalid character class name"), /* REG_ECTYPE */ + gettext_noop ("Trailing backslash"), /* REG_EESCAPE */ + gettext_noop ("Invalid back reference"), /* REG_ESUBREG */ + gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */ + gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */ + gettext_noop ("Unmatched \\{"), /* REG_EBRACE */ + gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */ + gettext_noop ("Invalid range end"), /* REG_ERANGE */ + gettext_noop ("Memory exhausted"), /* REG_ESPACE */ + gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */ + gettext_noop ("Premature end of regular expression"), /* REG_EEND */ + gettext_noop ("Regular expression too big"), /* REG_ESIZE */ + gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */ + }; + +/* Avoiding alloca during matching, to placate r_alloc. */ + +/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the + searching and matching functions should not call alloca. On some + systems, alloca is implemented in terms of malloc, and if we're + using the relocating allocator routines, then malloc could cause a + relocation, which might (if the strings being searched are in the + ralloc heap) shift the data out from underneath the regexp + routines. + + Here's another reason to avoid allocation: Emacs + processes input from X in a signal handler; processing X input may + call malloc; if input arrives while a matching routine is calling + malloc, then we're scrod. But Emacs can't just block input while + calling matching routines; then we don't notice interrupts when + they come in. So, Emacs blocks input around all regexp calls + except the matching calls, which it leaves unprotected, in the + faith that they will not malloc. */ + +/* Normally, this is fine. */ +#define MATCH_MAY_ALLOCATE + +/* When using GNU C, we are not REALLY using the C alloca, no matter + what config.h may say. So don't take precautions for it. */ +#ifdef __GNUC__ +#undef C_ALLOCA +#endif + +/* The match routines may not allocate if (1) they would do it with malloc + and (2) it's not safe for them to use malloc. + Note that if REL_ALLOC is defined, matching would not use malloc for the + failure stack, but we would still use it for the register vectors; + so REL_ALLOC should not affect this. */ +#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs) +#undef MATCH_MAY_ALLOCATE +#endif + + +/* Failure stack declarations and macros; both re_compile_fastmap and + re_match_2 use a failure stack. These have to be macros because of + REGEX_ALLOCATE_STACK. */ + + +/* Approximate number of failure points for which to initially allocate space + when matching. If this number is exceeded, we allocate more + space, so it is not a hard limit. */ +#ifndef INIT_FAILURE_ALLOC +#define INIT_FAILURE_ALLOC 20 +#endif + +/* Roughly the maximum number of failure points on the stack. Would be + exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed. + This is a variable only so users of regex can assign to it; we never + change it ourselves. */ +#if defined (MATCH_MAY_ALLOCATE) +/* Note that 4400 is enough to cause a crash on Alpha OSF/1, + whose default stack limit is 2mb. In order for a larger + value to work reliably, you have to try to make it accord + with the process stack limit. */ +int re_max_failures = 40000; +#else +int re_max_failures = 4000; +#endif + +union fail_stack_elt +{ + const unsigned char *pointer; + unsigned int integer; +}; + +typedef union fail_stack_elt fail_stack_elt_t; + +typedef struct +{ + fail_stack_elt_t *stack; + unsigned size; + unsigned avail; /* Offset of next open position. */ + unsigned frame; /* Offset of the cur constructed frame. */ +} fail_stack_type; + +#define PATTERN_STACK_EMPTY() (fail_stack.avail == 0) +#define FAIL_STACK_EMPTY() (fail_stack.frame == 0) +#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size) + + +/* Define macros to initialize and free the failure stack. + Do `return -2' if the alloc fails. */ + +#ifdef MATCH_MAY_ALLOCATE +#define INIT_FAIL_STACK() \ + do { \ + fail_stack.stack = (fail_stack_elt_t *) \ + REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \ + * sizeof (fail_stack_elt_t)); \ + \ + if (fail_stack.stack == NULL) \ + return -2; \ + \ + fail_stack.size = INIT_FAILURE_ALLOC; \ + fail_stack.avail = 0; \ + fail_stack.frame = 0; \ + } while (0) + +#define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack) +#else +#define INIT_FAIL_STACK() \ + do { \ + fail_stack.avail = 0; \ + fail_stack.frame = 0; \ + } while (0) + +#define RESET_FAIL_STACK() +#endif + + +/* Double the size of FAIL_STACK, up to a limit + which allows approximately `re_max_failures' items. + + Return 1 if succeeds, and 0 if either ran out of memory + allocating space for it or it was already too large. + + REGEX_REALLOCATE_STACK requires `destination' be declared. */ + +/* Factor to increase the failure stack size by + when we increase it. + This used to be 2, but 2 was too wasteful + because the old discarded stacks added up to as much space + were as ultimate, maximum-size stack. */ +#define FAIL_STACK_GROWTH_FACTOR 4 + +#define GROW_FAIL_STACK(fail_stack) \ + (((fail_stack).size * sizeof (fail_stack_elt_t) \ + >= re_max_failures * TYPICAL_FAILURE_SIZE) \ + ? 0 \ + : ((fail_stack).stack \ + = (fail_stack_elt_t *) \ + REGEX_REALLOCATE_STACK ((fail_stack).stack, \ + (fail_stack).size * sizeof (fail_stack_elt_t), \ + MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \ + ((fail_stack).size * sizeof (fail_stack_elt_t) \ + * FAIL_STACK_GROWTH_FACTOR))), \ + \ + (fail_stack).stack == NULL \ + ? 0 \ + : ((fail_stack).size \ + = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \ + ((fail_stack).size * sizeof (fail_stack_elt_t) \ + * FAIL_STACK_GROWTH_FACTOR)) \ + / sizeof (fail_stack_elt_t)), \ + 1))) + + +/* Push pointer POINTER on FAIL_STACK. + Return 1 if was able to do so and 0 if ran out of memory allocating + space to do so. */ +#define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \ + ((FAIL_STACK_FULL () \ + && !GROW_FAIL_STACK (FAIL_STACK)) \ + ? 0 \ + : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \ + 1)) +#define POP_PATTERN_OP() POP_FAILURE_POINTER () + +/* Push a pointer value onto the failure stack. + Assumes the variable `fail_stack'. Probably should only + be called from within `PUSH_FAILURE_POINT'. */ +#define PUSH_FAILURE_POINTER(item) \ + fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item) + +/* This pushes an integer-valued item onto the failure stack. + Assumes the variable `fail_stack'. Probably should only + be called from within `PUSH_FAILURE_POINT'. */ +#define PUSH_FAILURE_INT(item) \ + fail_stack.stack[fail_stack.avail++].integer = (item) + +/* Push a fail_stack_elt_t value onto the failure stack. + Assumes the variable `fail_stack'. Probably should only + be called from within `PUSH_FAILURE_POINT'. */ +#define PUSH_FAILURE_ELT(item) \ + fail_stack.stack[fail_stack.avail++] = (item) + +/* These three POP... operations complement the three PUSH... operations. + All assume that `fail_stack' is nonempty. */ +#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer +#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer +#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail] + +/* Individual items aside from the registers. */ +#define NUM_NONREG_ITEMS 3 + +/* Used to examine the stack (to detect infinite loops). */ +#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer +#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer) +#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer +#define TOP_FAILURE_HANDLE() fail_stack.frame + + +#define ENSURE_FAIL_STACK(space) \ +while (REMAINING_AVAIL_SLOTS <= space) { \ + if (!GROW_FAIL_STACK (fail_stack)) \ + return -2; \ + DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\ + DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\ +} + +/* Push register NUM onto the stack. */ +#define PUSH_FAILURE_REG(num) \ +do { \ + char *destination; \ + ENSURE_FAIL_STACK(3); \ + DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \ + num, regstart[num], regend[num]); \ + PUSH_FAILURE_POINTER (regstart[num]); \ + PUSH_FAILURE_POINTER (regend[num]); \ + PUSH_FAILURE_INT (num); \ +} while (0) + +/* Pop a saved register off the stack. */ +#define POP_FAILURE_REG() \ +do { \ + int reg = POP_FAILURE_INT (); \ + regend[reg] = POP_FAILURE_POINTER (); \ + regstart[reg] = POP_FAILURE_POINTER (); \ + DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \ + reg, regstart[reg], regend[reg]); \ +} while (0) + +/* Check that we are not stuck in an infinite loop. */ +#define CHECK_INFINITE_LOOP(pat_cur, string_place) \ +do { \ + int failure = TOP_FAILURE_HANDLE(); \ + /* Check for infinite matching loops */ \ + while (failure > 0 && \ + (FAILURE_STR (failure) == string_place \ + || FAILURE_STR (failure) == NULL)) \ + { \ + assert (FAILURE_PAT (failure) >= bufp->buffer \ + && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \ + if (FAILURE_PAT (failure) == pat_cur) \ + goto fail; \ + DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \ + failure = NEXT_FAILURE_HANDLE(failure); \ + } \ + DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \ +} while (0) + +/* Push the information about the state we will need + if we ever fail back to it. + + Requires variables fail_stack, regstart, regend and + num_regs be declared. GROW_FAIL_STACK requires `destination' be + declared. + + Does `return FAILURE_CODE' if runs out of memory. */ + +#define PUSH_FAILURE_POINT(pattern, string_place) \ +do { \ + char *destination; \ + /* Must be int, so when we don't save any registers, the arithmetic \ + of 0 + -1 isn't done as unsigned. */ \ + \ + DEBUG_STATEMENT (failure_id++); \ + DEBUG_STATEMENT (nfailure_points_pushed++); \ + DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \ + DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \ + DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\ + \ + ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \ + \ + DEBUG_PRINT1 ("\n"); \ + \ + DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \ + PUSH_FAILURE_INT (fail_stack.frame); \ + \ + DEBUG_PRINT2 (" Push string %p: `", string_place); \ + DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\ + DEBUG_PRINT1 ("'\n"); \ + PUSH_FAILURE_POINTER (string_place); \ + \ + DEBUG_PRINT2 (" Push pattern %p: ", pattern); \ + DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \ + PUSH_FAILURE_POINTER (pattern); \ + \ + /* Close the frame by moving the frame pointer past it. */ \ + fail_stack.frame = fail_stack.avail; \ +} while (0) + +/* Estimate the size of data pushed by a typical failure stack entry. + An estimate is all we need, because all we use this for + is to choose a limit for how big to make the failure stack. */ + +#define TYPICAL_FAILURE_SIZE 20 + +/* How many items can still be added to the stack without overflowing it. */ +#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail) + + +/* Pops what PUSH_FAIL_STACK pushes. + + We restore into the parameters, all of which should be lvalues: + STR -- the saved data position. + PAT -- the saved pattern position. + REGSTART, REGEND -- arrays of string positions. + + Also assumes the variables `fail_stack' and (if debugging), `bufp', + `pend', `string1', `size1', `string2', and `size2'. */ + +#define POP_FAILURE_POINT(str, pat) \ +do { \ + assert (!FAIL_STACK_EMPTY ()); \ + \ + /* Remove failure points and point to how many regs pushed. */ \ + DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \ + DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \ + DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \ + \ + /* Pop the saved registers. */ \ + while (fail_stack.frame < fail_stack.avail) \ + POP_FAILURE_REG (); \ + \ + pat = (unsigned char *) POP_FAILURE_POINTER (); \ + DEBUG_PRINT2 (" Popping pattern %p: ", pat); \ + DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \ + \ + /* If the saved string location is NULL, it came from an \ + on_failure_keep_string_jump opcode, and we want to throw away the \ + saved NULL, thus retaining our current position in the string. */ \ + str = (re_char *) POP_FAILURE_POINTER (); \ + DEBUG_PRINT2 (" Popping string %p: `", str); \ + DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \ + DEBUG_PRINT1 ("'\n"); \ + \ + fail_stack.frame = POP_FAILURE_INT (); \ + DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \ + \ + assert (fail_stack.avail >= 0); \ + assert (fail_stack.frame <= fail_stack.avail); \ + \ + DEBUG_STATEMENT (nfailure_points_popped++); \ +} while (0) /* POP_FAILURE_POINT */ + + + +/* Registers are set to a sentinel when they haven't yet matched. */ +#define REG_UNSET_VALUE NULL +#define REG_UNSET(e) ((e) == REG_UNSET_VALUE) + +/* Subroutine declarations and macros for regex_compile. */ + +static void store_op1 _RE_ARGS((re_opcode_t op, unsigned char *loc, int arg)); +static void store_op2 _RE_ARGS((re_opcode_t op, unsigned char *loc, + int arg1, int arg2)); +static void insert_op1 _RE_ARGS((re_opcode_t op, unsigned char *loc, + int arg, unsigned char *end)); +static void insert_op2 _RE_ARGS((re_opcode_t op, unsigned char *loc, + int arg1, int arg2, unsigned char *end)); +static boolean at_begline_loc_p _RE_ARGS((const unsigned char *pattern, + const unsigned char *p, + reg_syntax_t syntax)); +static boolean at_endline_loc_p _RE_ARGS((const unsigned char *p, + const unsigned char *pend, + reg_syntax_t syntax)); +static unsigned char *skip_one_char _RE_ARGS((unsigned char *p)); + +/* Fetch the next character in the uncompiled pattern---translating it + if necessary. Also cast from a signed character in the constant + string passed to us by the user to an unsigned char that we can use + as an array index (in, e.g., `translate'). */ +#ifndef PATFETCH +#define PATFETCH(c) \ + do { \ + PATFETCH_RAW (c); \ + if (RE_TRANSLATE_P (translate)) c = RE_TRANSLATE (translate, c); \ + } while (0) +#endif + +/* Fetch the next character in the uncompiled pattern, with no + translation. */ +#define PATFETCH_RAW(c) \ + do {if (p == pend) return REG_EEND; \ + c = *p++; \ + } while (0) + +/* Go backwards one character in the pattern. */ +#define PATUNFETCH p-- + + +/* If `translate' is non-null, return translate[D], else just D. We + cast the subscript to translate because some data is declared as + `char *', to avoid warnings when a string constant is passed. But + when we use a character as a subscript we must make it unsigned. */ +#ifndef TRANSLATE +#define TRANSLATE(d) \ + (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d)) +#endif + + +/* Macros for outputting the compiled pattern into `buffer'. */ + +/* If the buffer isn't allocated when it comes in, use this. */ +#define INIT_BUF_SIZE 32 + +/* Make sure we have at least N more bytes of space in buffer. */ +#define GET_BUFFER_SPACE(n) \ + while (b - bufp->buffer + (n) > bufp->allocated) \ + EXTEND_BUFFER () + +/* Make sure we have one more byte of buffer space and then add C to it. */ +#define BUF_PUSH(c) \ + do { \ + GET_BUFFER_SPACE (1); \ + *b++ = (unsigned char) (c); \ + } while (0) + + +/* Ensure we have two more bytes of buffer space and then append C1 and C2. */ +#define BUF_PUSH_2(c1, c2) \ + do { \ + GET_BUFFER_SPACE (2); \ + *b++ = (unsigned char) (c1); \ + *b++ = (unsigned char) (c2); \ + } while (0) + + +/* As with BUF_PUSH_2, except for three bytes. */ +#define BUF_PUSH_3(c1, c2, c3) \ + do { \ + GET_BUFFER_SPACE (3); \ + *b++ = (unsigned char) (c1); \ + *b++ = (unsigned char) (c2); \ + *b++ = (unsigned char) (c3); \ + } while (0) + + +/* Store a jump with opcode OP at LOC to location TO. We store a + relative address offset by the three bytes the jump itself occupies. */ +#define STORE_JUMP(op, loc, to) \ + store_op1 (op, loc, (to) - (loc) - 3) + +/* Likewise, for a two-argument jump. */ +#define STORE_JUMP2(op, loc, to, arg) \ + store_op2 (op, loc, (to) - (loc) - 3, arg) + +/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */ +#define INSERT_JUMP(op, loc, to) \ + insert_op1 (op, loc, (to) - (loc) - 3, b) + +/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */ +#define INSERT_JUMP2(op, loc, to, arg) \ + insert_op2 (op, loc, (to) - (loc) - 3, arg, b) + + +/* This is not an arbitrary limit: the arguments which represent offsets + into the pattern are two bytes long. So if 2^16 bytes turns out to + be too small, many things would have to change. */ +#define MAX_BUF_SIZE (1L << 16) + + +/* Extend the buffer by twice its current size via realloc and + reset the pointers that pointed into the old block to point to the + correct places in the new one. If extending the buffer results in it + being larger than MAX_BUF_SIZE, then flag memory exhausted. */ +#define EXTEND_BUFFER() \ + do { \ + unsigned char *old_buffer = bufp->buffer; \ + if (bufp->allocated == MAX_BUF_SIZE) \ + return REG_ESIZE; \ + bufp->allocated <<= 1; \ + if (bufp->allocated > MAX_BUF_SIZE) \ + bufp->allocated = MAX_BUF_SIZE; \ + bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\ + if (bufp->buffer == NULL) \ + return REG_ESPACE; \ + /* If the buffer moved, move all the pointers into it. */ \ + if (old_buffer != bufp->buffer) \ + { \ + b = (b - old_buffer) + bufp->buffer; \ + begalt = (begalt - old_buffer) + bufp->buffer; \ + if (fixup_alt_jump) \ + fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\ + if (laststart) \ + laststart = (laststart - old_buffer) + bufp->buffer; \ + if (pending_exact) \ + pending_exact = (pending_exact - old_buffer) + bufp->buffer; \ + } \ + } while (0) + + +/* Since we have one byte reserved for the register number argument to + {start,stop}_memory, the maximum number of groups we can report + things about is what fits in that byte. */ +#define MAX_REGNUM 255 + +/* But patterns can have more than `MAX_REGNUM' registers. We just + ignore the excess. */ +typedef unsigned regnum_t; + + +/* Macros for the compile stack. */ + +/* Since offsets can go either forwards or backwards, this type needs to + be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */ +typedef int pattern_offset_t; + +typedef struct +{ + pattern_offset_t begalt_offset; + pattern_offset_t fixup_alt_jump; + pattern_offset_t laststart_offset; + regnum_t regnum; +} compile_stack_elt_t; + + +typedef struct +{ + compile_stack_elt_t *stack; + unsigned size; + unsigned avail; /* Offset of next open position. */ +} compile_stack_type; + + +#define INIT_COMPILE_STACK_SIZE 32 + +#define COMPILE_STACK_EMPTY (compile_stack.avail == 0) +#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size) + +/* The next available element. */ +#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail]) + + +/* Structure to manage work area for range table. */ +struct range_table_work_area +{ + int *table; /* actual work area. */ + int allocated; /* allocated size for work area in bytes. */ + int used; /* actually used size in words. */ + int bits; /* flag to record character classes */ +}; + +/* Make sure that WORK_AREA can hold more N multibyte characters. */ +#define EXTEND_RANGE_TABLE_WORK_AREA(work_area, n) \ + do { \ + if (((work_area).used + (n)) * sizeof (int) > (work_area).allocated) \ + { \ + (work_area).allocated += 16 * sizeof (int); \ + if ((work_area).table) \ + (work_area).table \ + = (int *) realloc ((work_area).table, (work_area).allocated); \ + else \ + (work_area).table \ + = (int *) malloc ((work_area).allocated); \ + if ((work_area).table == 0) \ + FREE_STACK_RETURN (REG_ESPACE); \ + } \ + } while (0) + +#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \ + (work_area).bits |= (bit) + +/* These bits represent the various character classes such as [:alnum:] + in a charset's range table. */ +#define BIT_ALNUM 0x1 +#define BIT_ALPHA 0x2 +#define BIT_WORD 0x4 +#define BIT_ASCII 0x8 +#define BIT_NONASCII 0x10 +#define BIT_GRAPH 0x20 +#define BIT_LOWER 0x40 +#define BIT_PRINT 0x80 +#define BIT_PUNCT 0x100 +#define BIT_SPACE 0x200 +#define BIT_UPPER 0x400 +#define BIT_UNIBYTE 0x800 +#define BIT_MULTIBYTE 0x1000 + +/* Set a range (RANGE_START, RANGE_END) to WORK_AREA. */ +#define SET_RANGE_TABLE_WORK_AREA(work_area, range_start, range_end) \ + do { \ + EXTEND_RANGE_TABLE_WORK_AREA ((work_area), 2); \ + (work_area).table[(work_area).used++] = (range_start); \ + (work_area).table[(work_area).used++] = (range_end); \ + } while (0) + +/* Free allocated memory for WORK_AREA. */ +#define FREE_RANGE_TABLE_WORK_AREA(work_area) \ + do { \ + if ((work_area).table) \ + free ((work_area).table); \ + } while (0) + +#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0) +#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used) +#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits) +#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i]) + + +/* Set the bit for character C in a list. */ +#define SET_LIST_BIT(c) \ + (b[((unsigned char) (c)) / BYTEWIDTH] \ + |= 1 << (((unsigned char) c) % BYTEWIDTH)) + + +/* Get the next unsigned number in the uncompiled pattern. */ +#define GET_UNSIGNED_NUMBER(num) \ + do { if (p != pend) \ + { \ + PATFETCH (c); \ + while (ISDIGIT (c)) \ + { \ + if (num < 0) \ + num = 0; \ + num = num * 10 + c - '0'; \ + if (p == pend) \ + break; \ + PATFETCH (c); \ + } \ + } \ + } while (0) + +#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */ + +#define IS_CHAR_CLASS(string) \ + (STREQ (string, "alpha") || STREQ (string, "upper") \ + || STREQ (string, "lower") || STREQ (string, "digit") \ + || STREQ (string, "alnum") || STREQ (string, "xdigit") \ + || STREQ (string, "space") || STREQ (string, "print") \ + || STREQ (string, "punct") || STREQ (string, "graph") \ + || STREQ (string, "cntrl") || STREQ (string, "blank") \ + || STREQ (string, "word") \ + || STREQ (string, "ascii") || STREQ (string, "nonascii") \ + || STREQ (string, "unibyte") || STREQ (string, "multibyte")) + +/* QUIT is only used on NTemacs. */ +#if !defined (WINDOWSNT) || !defined (emacs) +#undef QUIT +#define QUIT +#endif + +#ifndef MATCH_MAY_ALLOCATE + +/* If we cannot allocate large objects within re_match_2_internal, + we make the fail stack and register vectors global. + The fail stack, we grow to the maximum size when a regexp + is compiled. + The register vectors, we adjust in size each time we + compile a regexp, according to the number of registers it needs. */ + +static fail_stack_type fail_stack; + +/* Size with which the following vectors are currently allocated. + That is so we can make them bigger as needed, + but never make them smaller. */ +static int regs_allocated_size; + +static re_char ** regstart, ** regend; +static re_char **best_regstart, **best_regend; + +/* Make the register vectors big enough for NUM_REGS registers, + but don't make them smaller. */ + +static +regex_grow_registers (num_regs) + int num_regs; +{ + if (num_regs > regs_allocated_size) + { + RETALLOC_IF (regstart, num_regs, re_char *); + RETALLOC_IF (regend, num_regs, re_char *); + RETALLOC_IF (best_regstart, num_regs, re_char *); + RETALLOC_IF (best_regend, num_regs, re_char *); + + regs_allocated_size = num_regs; + } +} + +#endif /* not MATCH_MAY_ALLOCATE */ + +static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type + compile_stack, + regnum_t regnum)); + +/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX. + Returns one of error codes defined in `regex.h', or zero for success. + + Assumes the `allocated' (and perhaps `buffer') and `translate' + fields are set in BUFP on entry. + + If it succeeds, results are put in BUFP (if it returns an error, the + contents of BUFP are undefined): + `buffer' is the compiled pattern; + `syntax' is set to SYNTAX; + `used' is set to the length of the compiled pattern; + `fastmap_accurate' is zero; + `re_nsub' is the number of subexpressions in PATTERN; + `not_bol' and `not_eol' are zero; + + The `fastmap' and `newline_anchor' fields are neither + examined nor set. */ + +/* Insert the `jump' from the end of last alternative to "here". + The space for the jump has already been allocated. */ +#define FIXUP_ALT_JUMP() \ +do { \ + if (fixup_alt_jump) \ + STORE_JUMP (jump, fixup_alt_jump, b); \ +} while (0) + + +/* Return, freeing storage we allocated. */ +#define FREE_STACK_RETURN(value) \ + do { \ + FREE_RANGE_TABLE_WORK_AREA (range_table_work); \ + free (compile_stack.stack); \ + return value; \ + } while (0) + +static reg_errcode_t +regex_compile (pattern, size, syntax, bufp) + re_char *pattern; + int size; + reg_syntax_t syntax; + struct re_pattern_buffer *bufp; +{ + /* We fetch characters from PATTERN here. Even though PATTERN is + `char *' (i.e., signed), we declare these variables as unsigned, so + they can be reliably used as array indices. */ + register unsigned int c, c1; + + /* A random temporary spot in PATTERN. */ + re_char *p1; + + /* Points to the end of the buffer, where we should append. */ + register unsigned char *b; + + /* Keeps track of unclosed groups. */ + compile_stack_type compile_stack; + + /* Points to the current (ending) position in the pattern. */ +#ifdef AIX + /* `const' makes AIX compiler fail. */ + unsigned char *p = pattern; +#else + re_char *p = pattern; +#endif + re_char *pend = pattern + size; + + /* How to translate the characters in the pattern. */ + RE_TRANSLATE_TYPE translate = bufp->translate; + + /* Address of the count-byte of the most recently inserted `exactn' + command. This makes it possible to tell if a new exact-match + character can be added to that command or if the character requires + a new `exactn' command. */ + unsigned char *pending_exact = 0; + + /* Address of start of the most recently finished expression. + This tells, e.g., postfix * where to find the start of its + operand. Reset at the beginning of groups and alternatives. */ + unsigned char *laststart = 0; + + /* Address of beginning of regexp, or inside of last group. */ + unsigned char *begalt; + + /* Place in the uncompiled pattern (i.e., the {) to + which to go back if the interval is invalid. */ + re_char *beg_interval; + + /* Address of the place where a forward jump should go to the end of + the containing expression. Each alternative of an `or' -- except the + last -- ends with a forward jump of this sort. */ + unsigned char *fixup_alt_jump = 0; + + /* Counts open-groups as they are encountered. Remembered for the + matching close-group on the compile stack, so the same register + number is put in the stop_memory as the start_memory. */ + regnum_t regnum = 0; + + /* Work area for range table of charset. */ + struct range_table_work_area range_table_work; + +#ifdef DEBUG + debug++; + DEBUG_PRINT1 ("\nCompiling pattern: "); + if (debug > 0) + { + unsigned debug_count; + + for (debug_count = 0; debug_count < size; debug_count++) + putchar (pattern[debug_count]); + putchar ('\n'); + } +#endif /* DEBUG */ + + /* Initialize the compile stack. */ + compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t); + if (compile_stack.stack == NULL) + return REG_ESPACE; + + compile_stack.size = INIT_COMPILE_STACK_SIZE; + compile_stack.avail = 0; + + range_table_work.table = 0; + range_table_work.allocated = 0; + + /* Initialize the pattern buffer. */ + bufp->syntax = syntax; + bufp->fastmap_accurate = 0; + bufp->not_bol = bufp->not_eol = 0; + + /* Set `used' to zero, so that if we return an error, the pattern + printer (for debugging) will think there's no pattern. We reset it + at the end. */ + bufp->used = 0; + + /* Always count groups, whether or not bufp->no_sub is set. */ + bufp->re_nsub = 0; + +#ifdef emacs + /* bufp->multibyte is set before regex_compile is called, so don't alter + it. */ +#else /* not emacs */ + /* Nothing is recognized as a multibyte character. */ + bufp->multibyte = 0; +#endif + +#if !defined (emacs) && !defined (SYNTAX_TABLE) + /* Initialize the syntax table. */ + init_syntax_once (); +#endif + + if (bufp->allocated == 0) + { + if (bufp->buffer) + { /* If zero allocated, but buffer is non-null, try to realloc + enough space. This loses if buffer's address is bogus, but + that is the user's responsibility. */ + RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char); + } + else + { /* Caller did not allocate a buffer. Do it for them. */ + bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char); + } + if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE); + + bufp->allocated = INIT_BUF_SIZE; + } + + begalt = b = bufp->buffer; + + /* Loop through the uncompiled pattern until we're at the end. */ + while (p != pend) + { + PATFETCH (c); + + switch (c) + { + case '^': + { + if ( /* If at start of pattern, it's an operator. */ + p == pattern + 1 + /* If context independent, it's an operator. */ + || syntax & RE_CONTEXT_INDEP_ANCHORS + /* Otherwise, depends on what's come before. */ + || at_begline_loc_p (pattern, p, syntax)) + BUF_PUSH (begline); + else + goto normal_char; + } + break; + + + case '$': + { + if ( /* If at end of pattern, it's an operator. */ + p == pend + /* If context independent, it's an operator. */ + || syntax & RE_CONTEXT_INDEP_ANCHORS + /* Otherwise, depends on what's next. */ + || at_endline_loc_p (p, pend, syntax)) + BUF_PUSH (endline); + else + goto normal_char; + } + break; + + + case '+': + case '?': + if ((syntax & RE_BK_PLUS_QM) + || (syntax & RE_LIMITED_OPS)) + goto normal_char; + handle_plus: + case '*': + /* If there is no previous pattern... */ + if (!laststart) + { + if (syntax & RE_CONTEXT_INVALID_OPS) + FREE_STACK_RETURN (REG_BADRPT); + else if (!(syntax & RE_CONTEXT_INDEP_OPS)) + goto normal_char; + } + + { + /* 1 means zero (many) matches is allowed. */ + boolean zero_times_ok = 0, many_times_ok = 0; + boolean greedy = 1; + + /* If there is a sequence of repetition chars, collapse it + down to just one (the right one). We can't combine + interval operators with these because of, e.g., `a{2}*', + which should only match an even number of `a's. */ + + for (;;) + { + if (!(syntax & RE_ALL_GREEDY) + && c == '?' && (zero_times_ok || many_times_ok)) + greedy = 0; + else + { + zero_times_ok |= c != '+'; + many_times_ok |= c != '?'; + } + + if (p == pend) + break; + + PATFETCH (c); + + if (c == '*' + || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?'))) + ; + + else if (syntax & RE_BK_PLUS_QM && c == '\\') + { + if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); + + PATFETCH (c1); + if (!(c1 == '+' || c1 == '?')) + { + PATUNFETCH; + PATUNFETCH; + break; + } + + c = c1; + } + else + { + PATUNFETCH; + break; + } + + /* If we get here, we found another repeat character. */ + } + + /* Star, etc. applied to an empty pattern is equivalent + to an empty pattern. */ + if (!laststart || laststart == b) + break; + + /* Now we know whether or not zero matches is allowed + and also whether or not two or more matches is allowed. */ + if (greedy) + { + if (many_times_ok) + { + boolean simple = skip_one_char (laststart) == b; + unsigned int startoffset = 0; + assert (skip_one_char (laststart) <= b); + + if (!zero_times_ok && simple) + { /* Since simple * loops can be made faster by using + on_failure_keep_string_jump, we turn simple P+ + into PP* if P is simple. */ + unsigned char *p1, *p2; + startoffset = b - laststart; + GET_BUFFER_SPACE (startoffset); + p1 = b; p2 = laststart; + while (p2 < p1) + *b++ = *p2++; + zero_times_ok = 1; + } + + GET_BUFFER_SPACE (6); + if (!zero_times_ok) + /* A + loop. */ + STORE_JUMP (on_failure_jump_loop, b, b + 6); + else + /* Simple * loops can use on_failure_keep_string_jump + depending on what follows. But since we don't know + that yet, we leave the decision up to + on_failure_jump_smart. */ + INSERT_JUMP (simple ? on_failure_jump_smart + : on_failure_jump_loop, + laststart + startoffset, b + 6); + b += 3; + STORE_JUMP (jump, b, laststart + startoffset); + b += 3; + } + else + { + /* A simple ? pattern. */ + assert (zero_times_ok); + GET_BUFFER_SPACE (3); + INSERT_JUMP (on_failure_jump, laststart, b + 3); + b += 3; + } + } + else /* not greedy */ + { /* I wish the greedy and non-greedy cases could be merged. */ + + if (many_times_ok) + { + /* The non-greedy multiple match looks like a repeat..until: + we only need a conditional jump at the end of the loop */ + GET_BUFFER_SPACE (3); + STORE_JUMP (on_failure_jump, b, laststart); + b += 3; + if (zero_times_ok) + { + /* The repeat...until naturally matches one or more. + To also match zero times, we need to first jump to + the end of the loop (its conditional jump). */ + GET_BUFFER_SPACE (3); + INSERT_JUMP (jump, laststart, b); + b += 3; + } + } + else + { + /* non-greedy a?? */ + GET_BUFFER_SPACE (6); + INSERT_JUMP (jump, laststart, b + 3); + b += 3; + INSERT_JUMP (on_failure_jump, laststart, laststart + 6); + b += 3; + } + } + } + pending_exact = 0; + break; + + + case '.': + laststart = b; + BUF_PUSH (anychar); + break; + + + case '[': + { + CLEAR_RANGE_TABLE_WORK_USED (range_table_work); + + if (p == pend) FREE_STACK_RETURN (REG_EBRACK); + + /* Ensure that we have enough space to push a charset: the + opcode, the length count, and the bitset; 34 bytes in all. */ + GET_BUFFER_SPACE (34); + + laststart = b; + + /* We test `*p == '^' twice, instead of using an if + statement, so we only need one BUF_PUSH. */ + BUF_PUSH (*p == '^' ? charset_not : charset); + if (*p == '^') + p++; + + /* Remember the first position in the bracket expression. */ + p1 = p; + + /* Push the number of bytes in the bitmap. */ + BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH); + + /* Clear the whole map. */ + bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH); + + /* charset_not matches newline according to a syntax bit. */ + if ((re_opcode_t) b[-2] == charset_not + && (syntax & RE_HAT_LISTS_NOT_NEWLINE)) + SET_LIST_BIT ('\n'); + + /* Read in characters and ranges, setting map bits. */ + for (;;) + { + int len; + boolean escaped_char = false; + + if (p == pend) FREE_STACK_RETURN (REG_EBRACK); + + PATFETCH (c); + + /* \ might escape characters inside [...] and [^...]. */ + if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\') + { + if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); + + PATFETCH (c); + escaped_char = true; + } + else + { + /* Could be the end of the bracket expression. If it's + not (i.e., when the bracket expression is `[]' so + far), the ']' character bit gets set way below. */ + if (c == ']' && p != p1 + 1) + break; + } + + /* If C indicates start of multibyte char, get the + actual character code in C, and set the pattern + pointer P to the next character boundary. */ + if (bufp->multibyte && BASE_LEADING_CODE_P (c)) + { + PATUNFETCH; + c = STRING_CHAR_AND_LENGTH (p, pend - p, len); + p += len; + } + /* What should we do for the character which is + greater than 0x7F, but not BASE_LEADING_CODE_P? + XXX */ + + /* See if we're at the beginning of a possible character + class. */ + + else if (!escaped_char && + syntax & RE_CHAR_CLASSES && c == '[' && *p == ':') + { + /* Leave room for the null. */ + char str[CHAR_CLASS_MAX_LENGTH + 1]; + + PATFETCH (c); + c1 = 0; + + /* If pattern is `[[:'. */ + if (p == pend) FREE_STACK_RETURN (REG_EBRACK); + + for (;;) + { + PATFETCH (c); + if (c == ':' || c == ']' || p == pend + || c1 == CHAR_CLASS_MAX_LENGTH) + break; + str[c1++] = c; + } + str[c1] = '\0'; + + /* If isn't a word bracketed by `[:' and `:]': + undo the ending character, the letters, and + leave the leading `:' and `[' (but set bits for + them). */ + if (c == ':' && *p == ']') + { + int ch; + boolean is_alnum = STREQ (str, "alnum"); + boolean is_alpha = STREQ (str, "alpha"); + boolean is_ascii = STREQ (str, "ascii"); + boolean is_blank = STREQ (str, "blank"); + boolean is_cntrl = STREQ (str, "cntrl"); + boolean is_digit = STREQ (str, "digit"); + boolean is_graph = STREQ (str, "graph"); + boolean is_lower = STREQ (str, "lower"); + boolean is_multibyte = STREQ (str, "multibyte"); + boolean is_nonascii = STREQ (str, "nonascii"); + boolean is_print = STREQ (str, "print"); + boolean is_punct = STREQ (str, "punct"); + boolean is_space = STREQ (str, "space"); + boolean is_unibyte = STREQ (str, "unibyte"); + boolean is_upper = STREQ (str, "upper"); + boolean is_word = STREQ (str, "word"); + boolean is_xdigit = STREQ (str, "xdigit"); + + if (!IS_CHAR_CLASS (str)) + FREE_STACK_RETURN (REG_ECTYPE); + + /* Throw away the ] at the end of the character + class. */ + PATFETCH (c); + + if (p == pend) FREE_STACK_RETURN (REG_EBRACK); + + /* Most character classes in a multibyte match + just set a flag. Exceptions are is_blank, + is_digit, is_cntrl, and is_xdigit, since + they can only match ASCII characters. We + don't need to handle them for multibyte. */ + + if (bufp->multibyte) + { + int bit = 0; + + if (is_alnum) bit = BIT_ALNUM; + if (is_alpha) bit = BIT_ALPHA; + if (is_ascii) bit = BIT_ASCII; + if (is_graph) bit = BIT_GRAPH; + if (is_lower) bit = BIT_LOWER; + if (is_multibyte) bit = BIT_MULTIBYTE; + if (is_nonascii) bit = BIT_NONASCII; + if (is_print) bit = BIT_PRINT; + if (is_punct) bit = BIT_PUNCT; + if (is_space) bit = BIT_SPACE; + if (is_unibyte) bit = BIT_UNIBYTE; + if (is_upper) bit = BIT_UPPER; + if (is_word) bit = BIT_WORD; + if (bit) + SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work, + bit); + } + + /* Handle character classes for ASCII characters. */ + for (ch = 0; ch < 1 << BYTEWIDTH; ch++) + { + int translated = TRANSLATE (ch); + /* This was split into 3 if's to + avoid an arbitrary limit in some compiler. */ + if ( (is_alnum && ISALNUM (ch)) + || (is_alpha && ISALPHA (ch)) + || (is_blank && ISBLANK (ch)) + || (is_cntrl && ISCNTRL (ch))) + SET_LIST_BIT (translated); + if ( (is_digit && ISDIGIT (ch)) + || (is_graph && ISGRAPH (ch)) + || (is_lower && ISLOWER (ch)) + || (is_print && ISPRINT (ch))) + SET_LIST_BIT (translated); + if ( (is_punct && ISPUNCT (ch)) + || (is_space && ISSPACE (ch)) + || (is_upper && ISUPPER (ch)) + || (is_xdigit && ISXDIGIT (ch))) + SET_LIST_BIT (translated); + if ( (is_ascii && IS_REAL_ASCII (ch)) + || (is_nonascii && !IS_REAL_ASCII (ch)) + || (is_unibyte && ISUNIBYTE (ch)) + || (is_multibyte && !ISUNIBYTE (ch))) + SET_LIST_BIT (translated); + + if ( (is_word && ISWORD (ch))) + SET_LIST_BIT (translated); + } + + /* Repeat the loop. */ + continue; + } + else + { + c1++; + while (c1--) + PATUNFETCH; + SET_LIST_BIT ('['); + + /* Because the `:' may starts the range, we + can't simply set bit and repeat the loop. + Instead, just set it to C and handle below. */ + c = ':'; + } + } + + if (p < pend && p[0] == '-' && p[1] != ']') + { + + /* Discard the `-'. */ + PATFETCH (c1); + + /* Fetch the character which ends the range. */ + PATFETCH (c1); + if (bufp->multibyte && BASE_LEADING_CODE_P (c1)) + { + PATUNFETCH; + c1 = STRING_CHAR_AND_LENGTH (p, pend - p, len); + p += len; + } + + if (SINGLE_BYTE_CHAR_P (c) + && ! SINGLE_BYTE_CHAR_P (c1)) + { + /* Handle a range such as \177-\377 in multibyte mode. + Split that into two ranges,, + the low one ending at 0237, and the high one + starting at ...040. */ + /* Unless I'm missing something, + this line is useless. -sm + int c1_base = (c1 & ~0177) | 040; */ + SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1); + c1 = 0237; + } + else if (!SAME_CHARSET_P (c, c1)) + FREE_STACK_RETURN (REG_ERANGE); + } + else + /* Range from C to C. */ + c1 = c; + + /* Set the range ... */ + if (SINGLE_BYTE_CHAR_P (c)) + /* ... into bitmap. */ + { + unsigned this_char; + int range_start = c, range_end = c1; + + /* If the start is after the end, the range is empty. */ + if (range_start > range_end) + { + if (syntax & RE_NO_EMPTY_RANGES) + FREE_STACK_RETURN (REG_ERANGE); + /* Else, repeat the loop. */ + } + else + { + for (this_char = range_start; this_char <= range_end; + this_char++) + SET_LIST_BIT (TRANSLATE (this_char)); + } + } + else + /* ... into range table. */ + SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1); + } + + /* Discard any (non)matching list bytes that are all 0 at the + end of the map. Decrease the map-length byte too. */ + while ((int) b[-1] > 0 && b[b[-1] - 1] == 0) + b[-1]--; + b += b[-1]; + + /* Build real range table from work area. */ + if (RANGE_TABLE_WORK_USED (range_table_work) + || RANGE_TABLE_WORK_BITS (range_table_work)) + { + int i; + int used = RANGE_TABLE_WORK_USED (range_table_work); + + /* Allocate space for COUNT + RANGE_TABLE. Needs two + bytes for flags, two for COUNT, and three bytes for + each character. */ + GET_BUFFER_SPACE (4 + used * 3); + + /* Indicate the existence of range table. */ + laststart[1] |= 0x80; + + /* Store the character class flag bits into the range table. + If not in emacs, these flag bits are always 0. */ + *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff; + *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8; + + STORE_NUMBER_AND_INCR (b, used / 2); + for (i = 0; i < used; i++) + STORE_CHARACTER_AND_INCR + (b, RANGE_TABLE_WORK_ELT (range_table_work, i)); + } + } + break; + + + case '(': + if (syntax & RE_NO_BK_PARENS) + goto handle_open; + else + goto normal_char; + + + case ')': + if (syntax & RE_NO_BK_PARENS) + goto handle_close; + else + goto normal_char; + + + case '\n': + if (syntax & RE_NEWLINE_ALT) + goto handle_alt; + else + goto normal_char; + + + case '|': + if (syntax & RE_NO_BK_VBAR) + goto handle_alt; + else + goto normal_char; + + + case '{': + if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES) + goto handle_interval; + else + goto normal_char; + + + case '\\': + if (p == pend) FREE_STACK_RETURN (REG_EESCAPE); + + /* Do not translate the character after the \, so that we can + distinguish, e.g., \B from \b, even if we normally would + translate, e.g., B to b. */ + PATFETCH_RAW (c); + + switch (c) + { + case '(': + if (syntax & RE_NO_BK_PARENS) + goto normal_backslash; + + handle_open: + { + int shy = 0; + if (p+1 < pend) + { + /* Look for a special (?...) construct */ + PATFETCH (c); + if ((syntax & RE_SHY_GROUPS) && c == '?') + { + PATFETCH (c); + switch (c) + { + case ':': shy = 1; break; + default: + /* Only (?:...) is supported right now. */ + FREE_STACK_RETURN (REG_BADPAT); + } + } + else PATUNFETCH; + } + + if (!shy) + { + bufp->re_nsub++; + regnum++; + } + + if (COMPILE_STACK_FULL) + { + RETALLOC (compile_stack.stack, compile_stack.size << 1, + compile_stack_elt_t); + if (compile_stack.stack == NULL) return REG_ESPACE; + + compile_stack.size <<= 1; + } + + /* These are the values to restore when we hit end of this + group. They are all relative offsets, so that if the + whole pattern moves because of realloc, they will still + be valid. */ + COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer; + COMPILE_STACK_TOP.fixup_alt_jump + = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0; + COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer; + COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum; + + /* Do not push a + start_memory for groups beyond the last one we can + represent in the compiled pattern. */ + if (regnum <= MAX_REGNUM && !shy) + BUF_PUSH_2 (start_memory, regnum); + + compile_stack.avail++; + + fixup_alt_jump = 0; + laststart = 0; + begalt = b; + /* If we've reached MAX_REGNUM groups, then this open + won't actually generate any code, so we'll have to + clear pending_exact explicitly. */ + pending_exact = 0; + break; + } + + case ')': + if (syntax & RE_NO_BK_PARENS) goto normal_backslash; + + if (COMPILE_STACK_EMPTY) + { + if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) + goto normal_backslash; + else + FREE_STACK_RETURN (REG_ERPAREN); + } + + handle_close: + FIXUP_ALT_JUMP (); + + /* See similar code for backslashed left paren above. */ + if (COMPILE_STACK_EMPTY) + { + if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD) + goto normal_char; + else + FREE_STACK_RETURN (REG_ERPAREN); + } + + /* Since we just checked for an empty stack above, this + ``can't happen''. */ + assert (compile_stack.avail != 0); + { + /* We don't just want to restore into `regnum', because + later groups should continue to be numbered higher, + as in `(ab)c(de)' -- the second group is #2. */ + regnum_t this_group_regnum; + + compile_stack.avail--; + begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset; + fixup_alt_jump + = COMPILE_STACK_TOP.fixup_alt_jump + ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1 + : 0; + laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset; + this_group_regnum = COMPILE_STACK_TOP.regnum; + /* If we've reached MAX_REGNUM groups, then this open + won't actually generate any code, so we'll have to + clear pending_exact explicitly. */ + pending_exact = 0; + + /* We're at the end of the group, so now we know how many + groups were inside this one. */ + if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0) + BUF_PUSH_2 (stop_memory, this_group_regnum); + } + break; + + + case '|': /* `\|'. */ + if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR) + goto normal_backslash; + handle_alt: + if (syntax & RE_LIMITED_OPS) + goto normal_char; + + /* Insert before the previous alternative a jump which + jumps to this alternative if the former fails. */ + GET_BUFFER_SPACE (3); + INSERT_JUMP (on_failure_jump, begalt, b + 6); + pending_exact = 0; + b += 3; + + /* The alternative before this one has a jump after it + which gets executed if it gets matched. Adjust that + jump so it will jump to this alternative's analogous + jump (put in below, which in turn will jump to the next + (if any) alternative's such jump, etc.). The last such + jump jumps to the correct final destination. A picture: + _____ _____ + | | | | + | v | v + a | b | c + + If we are at `b', then fixup_alt_jump right now points to a + three-byte space after `a'. We'll put in the jump, set + fixup_alt_jump to right after `b', and leave behind three + bytes which we'll fill in when we get to after `c'. */ + + FIXUP_ALT_JUMP (); + + /* Mark and leave space for a jump after this alternative, + to be filled in later either by next alternative or + when know we're at the end of a series of alternatives. */ + fixup_alt_jump = b; + GET_BUFFER_SPACE (3); + b += 3; + + laststart = 0; + begalt = b; + break; + + + case '{': + /* If \{ is a literal. */ + if (!(syntax & RE_INTERVALS) + /* If we're at `\{' and it's not the open-interval + operator. */ + || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES)) + || (p - 2 == pattern && p == pend)) + goto normal_backslash; + + handle_interval: + { + /* If got here, then the syntax allows intervals. */ + + /* At least (most) this many matches must be made. */ + int lower_bound = 0, upper_bound = -1; + + beg_interval = p - 1; + + if (p == pend) + { + if (syntax & RE_NO_BK_BRACES) + goto unfetch_interval; + else + FREE_STACK_RETURN (REG_EBRACE); + } + + GET_UNSIGNED_NUMBER (lower_bound); + + if (c == ',') + { + GET_UNSIGNED_NUMBER (upper_bound); + if (upper_bound < 0) upper_bound = RE_DUP_MAX; + } + else + /* Interval such as `{1}' => match exactly once. */ + upper_bound = lower_bound; + + if (lower_bound < 0 || upper_bound > RE_DUP_MAX + || lower_bound > upper_bound) + { + if (syntax & RE_NO_BK_BRACES) + goto unfetch_interval; + else + FREE_STACK_RETURN (REG_BADBR); + } + + if (!(syntax & RE_NO_BK_BRACES)) + { + if (c != '\\') FREE_STACK_RETURN (REG_EBRACE); + + PATFETCH (c); + } + + if (c != '}') + { + if (syntax & RE_NO_BK_BRACES) + goto unfetch_interval; + else + FREE_STACK_RETURN (REG_BADBR); + } + + /* We just parsed a valid interval. */ + + /* If it's invalid to have no preceding re. */ + if (!laststart) + { + if (syntax & RE_CONTEXT_INVALID_OPS) + FREE_STACK_RETURN (REG_BADRPT); + else if (syntax & RE_CONTEXT_INDEP_OPS) + laststart = b; + else + goto unfetch_interval; + } + + /* If the upper bound is zero, don't want to succeed at + all; jump from `laststart' to `b + 3', which will be + the end of the buffer after we insert the jump. */ + if (upper_bound == 0) + { + GET_BUFFER_SPACE (3); + INSERT_JUMP (jump, laststart, b + 3); + b += 3; + } + + /* Otherwise, we have a nontrivial interval. When + we're all done, the pattern will look like: + set_number_at + set_number_at + succeed_n + + jump_n + (The upper bound and `jump_n' are omitted if + `upper_bound' is 1, though.) */ + else + { /* If the upper bound is > 1, we need to insert + more at the end of the loop. */ + unsigned nbytes = 10 + (upper_bound > 1) * 10; + + GET_BUFFER_SPACE (nbytes); + + /* Initialize lower bound of the `succeed_n', even + though it will be set during matching by its + attendant `set_number_at' (inserted next), + because `re_compile_fastmap' needs to know. + Jump to the `jump_n' we might insert below. */ + INSERT_JUMP2 (succeed_n, laststart, + b + 5 + (upper_bound > 1) * 5, + lower_bound); + b += 5; + + /* Code to initialize the lower bound. Insert + before the `succeed_n'. The `5' is the last two + bytes of this `set_number_at', plus 3 bytes of + the following `succeed_n'. */ + insert_op2 (set_number_at, laststart, 5, lower_bound, b); + b += 5; + + if (upper_bound > 1) + { /* More than one repetition is allowed, so + append a backward jump to the `succeed_n' + that starts this interval. + + When we've reached this during matching, + we'll have matched the interval once, so + jump back only `upper_bound - 1' times. */ + STORE_JUMP2 (jump_n, b, laststart + 5, + upper_bound - 1); + b += 5; + + /* The location we want to set is the second + parameter of the `jump_n'; that is `b-2' as + an absolute address. `laststart' will be + the `set_number_at' we're about to insert; + `laststart+3' the number to set, the source + for the relative address. But we are + inserting into the middle of the pattern -- + so everything is getting moved up by 5. + Conclusion: (b - 2) - (laststart + 3) + 5, + i.e., b - laststart. + + We insert this at the beginning of the loop + so that if we fail during matching, we'll + reinitialize the bounds. */ + insert_op2 (set_number_at, laststart, b - laststart, + upper_bound - 1, b); + b += 5; + } + } + pending_exact = 0; + beg_interval = NULL; + } + break; + + unfetch_interval: + /* If an invalid interval, match the characters as literals. */ + assert (beg_interval); + p = beg_interval; + beg_interval = NULL; + + /* normal_char and normal_backslash need `c'. */ + PATFETCH (c); + + if (!(syntax & RE_NO_BK_BRACES)) + { + if (p > pattern && p[-1] == '\\') + goto normal_backslash; + } + goto normal_char; + +#ifdef emacs + /* There is no way to specify the before_dot and after_dot + operators. rms says this is ok. --karl */ + case '=': + BUF_PUSH (at_dot); + break; + + case 's': + laststart = b; + PATFETCH (c); + BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]); + break; + + case 'S': + laststart = b; + PATFETCH (c); + BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]); + break; + + case 'c': + laststart = b; + PATFETCH_RAW (c); + BUF_PUSH_2 (categoryspec, c); + break; + + case 'C': + laststart = b; + PATFETCH_RAW (c); + BUF_PUSH_2 (notcategoryspec, c); + break; +#endif /* emacs */ + + + case 'w': + laststart = b; + BUF_PUSH (wordchar); + break; + + + case 'W': + laststart = b; + BUF_PUSH (notwordchar); + break; + + + case '<': + BUF_PUSH (wordbeg); + break; + + case '>': + BUF_PUSH (wordend); + break; + + case 'b': + BUF_PUSH (wordbound); + break; + + case 'B': + BUF_PUSH (notwordbound); + break; + + case '`': + BUF_PUSH (begbuf); + break; + + case '\'': + BUF_PUSH (endbuf); + break; + + case '1': case '2': case '3': case '4': case '5': + case '6': case '7': case '8': case '9': + if (syntax & RE_NO_BK_REFS) + goto normal_char; + + c1 = c - '0'; + + if (c1 > regnum) + FREE_STACK_RETURN (REG_ESUBREG); + + /* Can't back reference to a subexpression if inside of it. */ + if (group_in_compile_stack (compile_stack, c1)) + goto normal_char; + + laststart = b; + BUF_PUSH_2 (duplicate, c1); + break; + + + case '+': + case '?': + if (syntax & RE_BK_PLUS_QM) + goto handle_plus; + else + goto normal_backslash; + + default: + normal_backslash: + /* You might think it would be useful for \ to mean + not to translate; but if we don't translate it + it will never match anything. */ + c = TRANSLATE (c); + goto normal_char; + } + break; + + + default: + /* Expects the character in `c'. */ + normal_char: + p1 = p - 1; /* P1 points the head of C. */ +#ifdef emacs + if (bufp->multibyte) + { + c = STRING_CHAR (p1, pend - p1); + c = TRANSLATE (c); + /* Set P to the next character boundary. */ + p += MULTIBYTE_FORM_LENGTH (p1, pend - p1) - 1; + } +#endif + /* If no exactn currently being built. */ + if (!pending_exact + + /* If last exactn not at current position. */ + || pending_exact + *pending_exact + 1 != b + + /* We have only one byte following the exactn for the count. */ + || *pending_exact >= (1 << BYTEWIDTH) - (p - p1) + + /* If followed by a repetition operator. */ + || (p != pend && (*p == '*' || *p == '^')) + || ((syntax & RE_BK_PLUS_QM) + ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?') + : p != pend && (*p == '+' || *p == '?')) + || ((syntax & RE_INTERVALS) + && ((syntax & RE_NO_BK_BRACES) + ? p != pend && *p == '{' + : p + 1 < pend && p[0] == '\\' && p[1] == '{'))) + { + /* Start building a new exactn. */ + + laststart = b; + + BUF_PUSH_2 (exactn, 0); + pending_exact = b - 1; + } + +#ifdef emacs + if (! SINGLE_BYTE_CHAR_P (c)) + { + unsigned char str[MAX_MULTIBYTE_LENGTH]; + int i = CHAR_STRING (c, str); + int j; + for (j = 0; j < i; j++) + { + BUF_PUSH (str[j]); + (*pending_exact)++; + } + } + else +#endif + { + BUF_PUSH (c); + (*pending_exact)++; + } + break; + } /* switch (c) */ + } /* while p != pend */ + + + /* Through the pattern now. */ + + FIXUP_ALT_JUMP (); + + if (!COMPILE_STACK_EMPTY) + FREE_STACK_RETURN (REG_EPAREN); + + /* If we don't want backtracking, force success + the first time we reach the end of the compiled pattern. */ + if (syntax & RE_NO_POSIX_BACKTRACKING) + BUF_PUSH (succeed); + + free (compile_stack.stack); + + /* We have succeeded; set the length of the buffer. */ + bufp->used = b - bufp->buffer; + +#ifdef DEBUG + if (debug > 0) + { + re_compile_fastmap (bufp); + DEBUG_PRINT1 ("\nCompiled pattern: \n"); + print_compiled_pattern (bufp); + } + debug--; +#endif /* DEBUG */ + +#ifndef MATCH_MAY_ALLOCATE + /* Initialize the failure stack to the largest possible stack. This + isn't necessary unless we're trying to avoid calling alloca in + the search and match routines. */ + { + int num_regs = bufp->re_nsub + 1; + + if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE) + { + fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE; + + if (! fail_stack.stack) + fail_stack.stack + = (fail_stack_elt_t *) malloc (fail_stack.size + * sizeof (fail_stack_elt_t)); + else + fail_stack.stack + = (fail_stack_elt_t *) realloc (fail_stack.stack, + (fail_stack.size + * sizeof (fail_stack_elt_t))); + } + + regex_grow_registers (num_regs); + } +#endif /* not MATCH_MAY_ALLOCATE */ + + return REG_NOERROR; +} /* regex_compile */ + +/* Subroutines for `regex_compile'. */ + +/* Store OP at LOC followed by two-byte integer parameter ARG. */ + +static void +store_op1 (op, loc, arg) + re_opcode_t op; + unsigned char *loc; + int arg; +{ + *loc = (unsigned char) op; + STORE_NUMBER (loc + 1, arg); +} + + +/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */ + +static void +store_op2 (op, loc, arg1, arg2) + re_opcode_t op; + unsigned char *loc; + int arg1, arg2; +{ + *loc = (unsigned char) op; + STORE_NUMBER (loc + 1, arg1); + STORE_NUMBER (loc + 3, arg2); +} + + +/* Copy the bytes from LOC to END to open up three bytes of space at LOC + for OP followed by two-byte integer parameter ARG. */ + +static void +insert_op1 (op, loc, arg, end) + re_opcode_t op; + unsigned char *loc; + int arg; + unsigned char *end; +{ + register unsigned char *pfrom = end; + register unsigned char *pto = end + 3; + + while (pfrom != loc) + *--pto = *--pfrom; + + store_op1 (op, loc, arg); +} + + +/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */ + +static void +insert_op2 (op, loc, arg1, arg2, end) + re_opcode_t op; + unsigned char *loc; + int arg1, arg2; + unsigned char *end; +{ + register unsigned char *pfrom = end; + register unsigned char *pto = end + 5; + + while (pfrom != loc) + *--pto = *--pfrom; + + store_op2 (op, loc, arg1, arg2); +} + + +/* P points to just after a ^ in PATTERN. Return true if that ^ comes + after an alternative or a begin-subexpression. We assume there is at + least one character before the ^. */ + +static boolean +at_begline_loc_p (pattern, p, syntax) + const unsigned char *pattern, *p; + reg_syntax_t syntax; +{ + const unsigned char *prev = p - 2; + boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\'; + + return + /* After a subexpression? */ + (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash)) + /* After an alternative? */ + || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash)); +} + + +/* The dual of at_begline_loc_p. This one is for $. We assume there is + at least one character after the $, i.e., `P < PEND'. */ + +static boolean +at_endline_loc_p (p, pend, syntax) + const unsigned char *p, *pend; + reg_syntax_t syntax; +{ + const unsigned char *next = p; + boolean next_backslash = *next == '\\'; + const unsigned char *next_next = p + 1 < pend ? p + 1 : 0; + + return + /* Before a subexpression? */ + (syntax & RE_NO_BK_PARENS ? *next == ')' + : next_backslash && next_next && *next_next == ')') + /* Before an alternative? */ + || (syntax & RE_NO_BK_VBAR ? *next == '|' + : next_backslash && next_next && *next_next == '|'); +} + + +/* Returns true if REGNUM is in one of COMPILE_STACK's elements and + false if it's not. */ + +static boolean +group_in_compile_stack (compile_stack, regnum) + compile_stack_type compile_stack; + regnum_t regnum; +{ + int this_element; + + for (this_element = compile_stack.avail - 1; + this_element >= 0; + this_element--) + if (compile_stack.stack[this_element].regnum == regnum) + return true; + + return false; +} + +/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in + BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible + characters can start a string that matches the pattern. This fastmap + is used by re_search to skip quickly over impossible starting points. + + Character codes above (1 << BYTEWIDTH) are not represented in the + fastmap, but the leading codes are represented. Thus, the fastmap + indicates which character sets could start a match. + + The caller must supply the address of a (1 << BYTEWIDTH)-byte data + area as BUFP->fastmap. + + We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in + the pattern buffer. + + Returns 0 if we succeed, -2 if an internal error. */ + +int +re_compile_fastmap (bufp) + struct re_pattern_buffer *bufp; +{ + int j, k; +#ifdef MATCH_MAY_ALLOCATE + fail_stack_type fail_stack; +#endif +#ifndef REGEX_MALLOC + char *destination; +#endif + + register char *fastmap = bufp->fastmap; + unsigned char *pattern = bufp->buffer; + unsigned long size = bufp->used; + unsigned char *p = pattern; + register unsigned char *pend = pattern + size; + +#if defined (REL_ALLOC) && defined (REGEX_MALLOC) + /* This holds the pointer to the failure stack, when + it is allocated relocatably. */ + fail_stack_elt_t *failure_stack_ptr; +#endif + + /* Assume that each path through the pattern can be null until + proven otherwise. We set this false at the bottom of switch + statement, to which we get only if a particular path doesn't + match the empty string. */ + boolean path_can_be_null = true; + + /* We aren't doing a `succeed_n' to begin with. */ + boolean succeed_n_p = false; + + /* If all elements for base leading-codes in fastmap is set, this + flag is set true. */ + boolean match_any_multibyte_characters = false; + + /* Maximum code of simple (single byte) character. */ + int simple_char_max; + + assert (fastmap != NULL && p != NULL); + + INIT_FAIL_STACK (); + bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */ + bufp->fastmap_accurate = 1; /* It will be when we're done. */ + bufp->can_be_null = 0; + + /* The loop below works as follows: + - It has a working-list kept in the PATTERN_STACK and which basically + starts by only containing a pointer to the first operation. + - If the opcode we're looking at is a match against some set of + chars, then we add those chars to the fastmap and go on to the + next work element from the worklist (done via `break'). + - If the opcode is a control operator on the other hand, we either + ignore it (if it's meaningless at this point, such as `start_memory') + or execute it (if it's a jump). If the jump has several destinations + (i.e. `on_failure_jump'), then we push the other destination onto the + worklist. + We guarantee termination by ignoring backward jumps (more or less), + so that `p' is monotonically increasing. More to the point, we + never set `p' (or push) anything `<= p1'. */ + + /* If can_be_null is set, then the fastmap will not be used anyway. */ + while (!bufp->can_be_null) + { + /* `p1' is used as a marker of how far back a `on_failure_jump' + can go without being ignored. It is normally equal to `p' + (which prevents any backward `on_failure_jump') except right + after a plain `jump', to allow patterns such as: + 0: jump 10 + 3..9: + 10: on_failure_jump 3 + as used for the *? operator. */ + unsigned char *p1 = p; + + if (p == pend || *p == succeed) + { + /* We have reached the (effective) end of pattern. */ + if (!PATTERN_STACK_EMPTY ()) + { + bufp->can_be_null |= path_can_be_null; + + /* Reset for next path. */ + path_can_be_null = true; + + p = (unsigned char*) POP_PATTERN_OP (); + + continue; + } + else + break; + } + + /* We should never be about to go beyond the end of the pattern. */ + assert (p < pend); + + switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) + { + + case duplicate: + /* If the first character has to match a backreference, that means + that the group was empty (since it already matched). Since this + is the only case that interests us here, we can assume that the + backreference must match the empty string. */ + p++; + continue; + + + /* Following are the cases which match a character. These end + with `break'. */ + + case exactn: + fastmap[p[1]] = 1; + break; + + +#ifndef emacs + case charset: + { + int length = (*p & 0x7f);; + p++; + + for (j = length * BYTEWIDTH - 1; j >= 0; j--) + if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) + fastmap[j] = 1; + } + break; + + case charset_not: + /* Chars beyond end of map must be allowed. */ + { + int length = (*p & 0x7f);; + p++; + + for (j = length * BYTEWIDTH; j < (1 << BYTEWIDTH); j++) + fastmap[j] = 1; + + for (j = length * BYTEWIDTH - 1; j >= 0; j--) + if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) + fastmap[j] = 1; + } + break; + + case wordchar: + for (j = 0; j < (1 << BYTEWIDTH); j++) + if (SYNTAX (j) == Sword) + fastmap[j] = 1; + break; + + + case notwordchar: + for (j = 0; j < (1 << BYTEWIDTH); j++) + if (SYNTAX (j) != Sword) + fastmap[j] = 1; + break; +#else /* emacs */ + case charset: + for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++; + j >= 0; j--) + if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) + fastmap[j] = 1; + + /* If we can match a character class, we can match + any character set. */ + if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2]) + && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0) + goto set_fastmap_for_multibyte_characters; + + if (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2]) + && match_any_multibyte_characters == false) + { + /* Set fastmap[I] 1 where I is a base leading code of each + multibyte character in the range table. */ + int c, count; + + /* Make P points the range table. */ + p += CHARSET_BITMAP_SIZE (&p[-2]); + + /* Extract the number of ranges in range table into COUNT. */ + EXTRACT_NUMBER_AND_INCR (count, p); + for (; count > 0; count--, p += 2 * 3) /* XXX */ + { + /* Extract the start of each range. */ + EXTRACT_CHARACTER (c, p); + j = CHAR_CHARSET (c); + fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1; + } + } + break; + + + case charset_not: + /* Chars beyond end of bitmap are possible matches. + All the single-byte codes can occur in multibyte buffers. + So any that are not listed in the charset + are possible matches, even in multibyte buffers. */ + simple_char_max = (1 << BYTEWIDTH); + for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH; + j < simple_char_max; j++) + fastmap[j] = 1; + + for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++; + j >= 0; j--) + if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))) + fastmap[j] = 1; + + if (bufp->multibyte) + /* Any character set can possibly contain a character + which doesn't match the specified set of characters. */ + { + set_fastmap_for_multibyte_characters: + if (match_any_multibyte_characters == false) + { + for (j = 0x80; j < 0xA0; j++) /* XXX */ + if (BASE_LEADING_CODE_P (j)) + fastmap[j] = 1; + match_any_multibyte_characters = true; + } + } + break; + + + case wordchar: + /* All the single-byte codes can occur in multibyte buffers, + and they may have word syntax. So do consider them. */ + simple_char_max = (1 << BYTEWIDTH); + for (j = 0; j < simple_char_max; j++) + if (SYNTAX (j) == Sword) + fastmap[j] = 1; + + if (bufp->multibyte) + /* Any character set can possibly contain a character + whose syntax is `Sword'. */ + goto set_fastmap_for_multibyte_characters; + break; + + + case notwordchar: + /* All the single-byte codes can occur in multibyte buffers, + and they may not have word syntax. So do consider them. */ + simple_char_max = (1 << BYTEWIDTH); + for (j = 0; j < simple_char_max; j++) + if (SYNTAX (j) != Sword) + fastmap[j] = 1; + + if (bufp->multibyte) + /* Any character set can possibly contain a character + whose syntax is not `Sword'. */ + goto set_fastmap_for_multibyte_characters; + break; +#endif + + case anychar: + { + int fastmap_newline = fastmap['\n']; + + /* `.' matches anything, except perhaps newline. + Even in a multibyte buffer, it should match any + conceivable byte value for the fastmap. */ + if (bufp->multibyte) + match_any_multibyte_characters = true; + + simple_char_max = (1 << BYTEWIDTH); + for (j = 0; j < simple_char_max; j++) + fastmap[j] = 1; + + /* ... except perhaps newline. */ + if (!(bufp->syntax & RE_DOT_NEWLINE)) + fastmap['\n'] = fastmap_newline; + + /* Otherwise, have to check alternative paths. */ + break; + } + +#ifdef emacs + case wordbound: + case notwordbound: + case wordbeg: + case wordend: + case notsyntaxspec: + case syntaxspec: + /* This match depends on text properties. These end with + aborting optimizations. */ + bufp->can_be_null = 1; + continue; +#if 0 + k = *p++; + simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); + for (j = 0; j < simple_char_max; j++) + if (SYNTAX (j) == (enum syntaxcode) k) + fastmap[j] = 1; + + if (bufp->multibyte) + /* Any character set can possibly contain a character + whose syntax is K. */ + goto set_fastmap_for_multibyte_characters; + break; + + case notsyntaxspec: + k = *p++; + simple_char_max = bufp->multibyte ? 0x80 : (1 << BYTEWIDTH); + for (j = 0; j < simple_char_max; j++) + if (SYNTAX (j) != (enum syntaxcode) k) + fastmap[j] = 1; + + if (bufp->multibyte) + /* Any character set can possibly contain a character + whose syntax is not K. */ + goto set_fastmap_for_multibyte_characters; + break; +#endif + + + case categoryspec: + k = *p++; + simple_char_max = (1 << BYTEWIDTH); + for (j = 0; j < simple_char_max; j++) + if (CHAR_HAS_CATEGORY (j, k)) + fastmap[j] = 1; + + if (bufp->multibyte) + /* Any character set can possibly contain a character + whose category is K. */ + goto set_fastmap_for_multibyte_characters; + break; + + + case notcategoryspec: + k = *p++; + simple_char_max = (1 << BYTEWIDTH); + for (j = 0; j < simple_char_max; j++) + if (!CHAR_HAS_CATEGORY (j, k)) + fastmap[j] = 1; + + if (bufp->multibyte) + /* Any character set can possibly contain a character + whose category is not K. */ + goto set_fastmap_for_multibyte_characters; + break; + + /* All cases after this match the empty string. These end with + `continue'. */ + + + case before_dot: + case at_dot: + case after_dot: + continue; +#endif /* emacs */ + + + case no_op: + case begline: + case endline: + case begbuf: + case endbuf: +#ifndef emacs + case wordbound: + case notwordbound: + case wordbeg: + case wordend: +#endif + continue; + + + case jump_n: + case jump: + EXTRACT_NUMBER_AND_INCR (j, p); + if (j < 0) + /* Backward jumps can only go back to code that we've already + visited. `re_compile' should make sure this is true. */ + break; + p += j; + switch (SWITCH_ENUM_CAST ((re_opcode_t) *p)) + { + case on_failure_jump: + case on_failure_keep_string_jump: + case on_failure_jump_loop: + case on_failure_jump_smart: + p++; + break; + default: + continue; + }; + /* Keep `p1' to allow the `on_failure_jump' we are jumping to + to jump back to "just after here". */ + /* Fallthrough */ + + case on_failure_jump: + case on_failure_keep_string_jump: + case on_failure_jump_loop: + case on_failure_jump_smart: + handle_on_failure_jump: + EXTRACT_NUMBER_AND_INCR (j, p); + + /* For some patterns, e.g., `(a?)?', `p+j' here points to the + end of the pattern. We don't want to push such a point, + since when we restore it above, entering the switch will + increment `p' past the end of the pattern. We don't need + to push such a point since we obviously won't find any more + fastmap entries beyond `pend'. Such a pattern can match + the null string, though. */ + if (p + j <= p1) + /* Backward jump to be ignored. */ + ; + else if (p + j < pend) + { + if (!PUSH_PATTERN_OP (p + j, fail_stack)) + { + RESET_FAIL_STACK (); + return -2; + } + } + else + bufp->can_be_null = 1; + + if (succeed_n_p) + { + EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */ + succeed_n_p = false; + } + + continue; + + + case succeed_n: + /* Get to the number of times to succeed. */ + p += 2; + + /* Increment p past the n for when k != 0. */ + EXTRACT_NUMBER_AND_INCR (k, p); + if (k == 0) + { + p -= 4; + succeed_n_p = true; /* Spaghetti code alert. */ + goto handle_on_failure_jump; + } + continue; + + + case set_number_at: + p += 4; + continue; + + + case start_memory: + case stop_memory: + p += 1; + continue; + + + default: + abort (); /* We have listed all the cases. */ + } /* switch *p++ */ + + /* Getting here means we have found the possible starting + characters for one path of the pattern -- and that the empty + string does not match. We need not follow this path further. + Instead, look at the next alternative (remembered on the + stack), or quit if no more. The test at the top of the loop + does these things. */ + path_can_be_null = false; + p = pend; + } /* while p */ + + /* Set `can_be_null' for the last path (also the first path, if the + pattern is empty). */ + bufp->can_be_null |= path_can_be_null; + RESET_FAIL_STACK (); + return 0; +} /* re_compile_fastmap */ + +/* Set REGS to hold NUM_REGS registers, storing them in STARTS and + ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use + this memory for recording register information. STARTS and ENDS + must be allocated using the malloc library routine, and must each + be at least NUM_REGS * sizeof (regoff_t) bytes long. + + If NUM_REGS == 0, then subsequent matches should allocate their own + register data. + + Unless this function is called, the first search or match using + PATTERN_BUFFER will allocate its own register data, without + freeing the old data. */ + +void +re_set_registers (bufp, regs, num_regs, starts, ends) + struct re_pattern_buffer *bufp; + struct re_registers *regs; + unsigned num_regs; + regoff_t *starts, *ends; +{ + if (num_regs) + { + bufp->regs_allocated = REGS_REALLOCATE; + regs->num_regs = num_regs; + regs->start = starts; + regs->end = ends; + } + else + { + bufp->regs_allocated = REGS_UNALLOCATED; + regs->num_regs = 0; + regs->start = regs->end = (regoff_t *) 0; + } +} + +/* Searching routines. */ + +/* Like re_search_2, below, but only one string is specified, and + doesn't let you say where to stop matching. */ + +int +re_search (bufp, string, size, startpos, range, regs) + struct re_pattern_buffer *bufp; + const char *string; + int size, startpos, range; + struct re_registers *regs; +{ + return re_search_2 (bufp, NULL, 0, string, size, startpos, range, + regs, size); +} + +/* End address of virtual concatenation of string. */ +#define STOP_ADDR_VSTRING(P) \ + (((P) >= size1 ? string2 + size2 : string1 + size1)) + +/* Address of POS in the concatenation of virtual string. */ +#define POS_ADDR_VSTRING(POS) \ + (((POS) >= size1 ? string2 - size1 : string1) + (POS)) + +/* Using the compiled pattern in BUFP->buffer, first tries to match the + virtual concatenation of STRING1 and STRING2, starting first at index + STARTPOS, then at STARTPOS + 1, and so on. + + STRING1 and STRING2 have length SIZE1 and SIZE2, respectively. + + RANGE is how far to scan while trying to match. RANGE = 0 means try + only at STARTPOS; in general, the last start tried is STARTPOS + + RANGE. + + In REGS, return the indices of the virtual concatenation of STRING1 + and STRING2 that matched the entire BUFP->buffer and its contained + subexpressions. + + Do not consider matching one past the index STOP in the virtual + concatenation of STRING1 and STRING2. + + We return either the position in the strings at which the match was + found, -1 if no match, or -2 if error (such as failure + stack overflow). */ + +int +re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop) + struct re_pattern_buffer *bufp; + const char *str1, *str2; + int size1, size2; + int startpos; + int range; + struct re_registers *regs; + int stop; +{ + int val; + re_char *string1 = (re_char*) str1; + re_char *string2 = (re_char*) str2; + register char *fastmap = bufp->fastmap; + register RE_TRANSLATE_TYPE translate = bufp->translate; + int total_size = size1 + size2; + int endpos = startpos + range; + int anchored_start = 0; + + /* Nonzero if we have to concern multibyte character. */ + int multibyte = bufp->multibyte; + + /* Check for out-of-range STARTPOS. */ + if (startpos < 0 || startpos > total_size) + return -1; + + /* Fix up RANGE if it might eventually take us outside + the virtual concatenation of STRING1 and STRING2. + Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */ + if (endpos < 0) + range = 0 - startpos; + else if (endpos > total_size) + range = total_size - startpos; + + /* If the search isn't to be a backwards one, don't waste time in a + search for a pattern anchored at beginning of buffer. */ + if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0) + { + if (startpos > 0) + return -1; + else + range = 0; + } + +#ifdef emacs + /* In a forward search for something that starts with \=. + don't keep searching past point. */ + if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0) + { + range = PT_BYTE - BEGV_BYTE - startpos; + if (range < 0) + return -1; + } +#endif /* emacs */ + + /* Update the fastmap now if not correct already. */ + if (fastmap && !bufp->fastmap_accurate) + if (re_compile_fastmap (bufp) == -2) + return -2; + + /* See whether the pattern is anchored. */ + if (bufp->buffer[0] == begline) + anchored_start = 1; + +#ifdef emacs + gl_state.object = re_match_object; + { + int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos)); + + SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1); + } +#endif + + /* Loop through the string, looking for a place to start matching. */ + for (;;) + { + /* If the pattern is anchored, + skip quickly past places we cannot match. + We don't bother to treat startpos == 0 specially + because that case doesn't repeat. */ + if (anchored_start && startpos > 0) + { + if (! (bufp->newline_anchor + && ((startpos <= size1 ? string1[startpos - 1] + : string2[startpos - size1 - 1]) + == '\n'))) + goto advance; + } + + /* If a fastmap is supplied, skip quickly over characters that + cannot be the start of a match. If the pattern can match the + null string, however, we don't need to skip characters; we want + the first null string. */ + if (fastmap && startpos < total_size && !bufp->can_be_null) + { + register re_char *d; + register unsigned int buf_ch; + + d = POS_ADDR_VSTRING (startpos); + + if (range > 0) /* Searching forwards. */ + { + register int lim = 0; + int irange = range; + + if (startpos < size1 && startpos + range >= size1) + lim = range - (size1 - startpos); + + /* Written out as an if-else to avoid testing `translate' + inside the loop. */ + if (RE_TRANSLATE_P (translate)) + { + if (multibyte) + while (range > lim) + { + int buf_charlen; + + buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim, + buf_charlen); + + buf_ch = RE_TRANSLATE (translate, buf_ch); + if (buf_ch >= 0400 + || fastmap[buf_ch]) + break; + + range -= buf_charlen; + d += buf_charlen; + } + else + while (range > lim + && !fastmap[RE_TRANSLATE (translate, *d)]) + { + d++; + range--; + } + } + else + while (range > lim && !fastmap[*d]) + { + d++; + range--; + } + + startpos += irange - range; + } + else /* Searching backwards. */ + { + buf_ch = STRING_CHAR (d, (startpos >= size1 + ? size2 + size1 - startpos + : size1 - startpos)); + if (RE_TRANSLATE_P (translate)) + buf_ch = RE_TRANSLATE (translate, buf_ch); + + if (! (buf_ch >= 0400 + || fastmap[buf_ch])) + goto advance; + } + } + + /* If can't match the null string, and that's all we have left, fail. */ + if (range >= 0 && startpos == total_size && fastmap + && !bufp->can_be_null) + return -1; + + val = re_match_2_internal (bufp, string1, size1, string2, size2, + startpos, regs, stop); +#ifndef REGEX_MALLOC +#ifdef C_ALLOCA + alloca (0); +#endif +#endif + + if (val >= 0) + return startpos; + + if (val == -2) + return -2; + + advance: + if (!range) + break; + else if (range > 0) + { + /* Update STARTPOS to the next character boundary. */ + if (multibyte) + { + re_char *p = POS_ADDR_VSTRING (startpos); + re_char *pend = STOP_ADDR_VSTRING (startpos); + int len = MULTIBYTE_FORM_LENGTH (p, pend - p); + + range -= len; + if (range < 0) + break; + startpos += len; + } + else + { + range--; + startpos++; + } + } + else + { + range++; + startpos--; + + /* Update STARTPOS to the previous character boundary. */ + if (multibyte) + { + re_char *p = POS_ADDR_VSTRING (startpos); + int len = 0; + + /* Find the head of multibyte form. */ + while (!CHAR_HEAD_P (*p)) + p--, len++; + + /* Adjust it. */ +#if 0 /* XXX */ + if (MULTIBYTE_FORM_LENGTH (p, len + 1) != (len + 1)) + ; + else +#endif + { + range += len; + if (range > 0) + break; + + startpos -= len; + } + } + } + } + return -1; +} /* re_search_2 */ + +/* Declarations and macros for re_match_2. */ + +static int bcmp_translate (); + +/* This converts PTR, a pointer into one of the search strings `string1' + and `string2' into an offset from the beginning of that string. */ +#define POINTER_TO_OFFSET(ptr) \ + (FIRST_STRING_P (ptr) \ + ? ((regoff_t) ((ptr) - string1)) \ + : ((regoff_t) ((ptr) - string2 + size1))) + +/* Call before fetching a character with *d. This switches over to + string2 if necessary. */ +#define PREFETCH() \ + while (d == dend) \ + { \ + /* End of string2 => fail. */ \ + if (dend == end_match_2) \ + goto fail; \ + /* End of string1 => advance to string2. */ \ + d = string2; \ + dend = end_match_2; \ + } + + +/* Test if at very beginning or at very end of the virtual concatenation + of `string1' and `string2'. If only one string, it's `string2'. */ +#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2) +#define AT_STRINGS_END(d) ((d) == end2) + + +/* Test if D points to a character which is word-constituent. We have + two special cases to check for: if past the end of string1, look at + the first character in string2; and if before the beginning of + string2, look at the last character in string1. */ +#define WORDCHAR_P(d) \ + (SYNTAX ((d) == end1 ? *string2 \ + : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \ + == Sword) + +/* Disabled due to a compiler bug -- see comment at case wordbound */ + +/* The comment at case wordbound is following one, but we don't use + AT_WORD_BOUNDARY anymore to support multibyte form. + + The DEC Alpha C compiler 3.x generates incorrect code for the + test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of + AT_WORD_BOUNDARY, so this code is disabled. Expanding the + macro and introducing temporary variables works around the bug. */ + +#if 0 +/* Test if the character before D and the one at D differ with respect + to being word-constituent. */ +#define AT_WORD_BOUNDARY(d) \ + (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \ + || WORDCHAR_P (d - 1) != WORDCHAR_P (d)) +#endif + +/* Free everything we malloc. */ +#ifdef MATCH_MAY_ALLOCATE +#define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else +#define FREE_VARIABLES() \ + do { \ + REGEX_FREE_STACK (fail_stack.stack); \ + FREE_VAR (regstart); \ + FREE_VAR (regend); \ + FREE_VAR (best_regstart); \ + FREE_VAR (best_regend); \ + } while (0) +#else +#define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */ +#endif /* not MATCH_MAY_ALLOCATE */ + + +/* Optimization routines. */ + +/* If the operation is a match against one or more chars, + return a pointer to the next operation, else return NULL. */ +static unsigned char * +skip_one_char (p) + unsigned char *p; +{ + switch (SWITCH_ENUM_CAST (*p++)) + { + case anychar: + break; + + case exactn: + p += *p + 1; + break; + + case charset_not: + case charset: + if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1)) + { + int mcnt; + p = CHARSET_RANGE_TABLE (p - 1); + EXTRACT_NUMBER_AND_INCR (mcnt, p); + p = CHARSET_RANGE_TABLE_END (p, mcnt); + } + else + p += 1 + CHARSET_BITMAP_SIZE (p - 1); + break; + +#ifdef emacs + case syntaxspec: + case notsyntaxspec: + case categoryspec: + case notcategoryspec: +#endif /* emacs */ + p++; + break; + + default: + p = NULL; + } + return p; +} + + +/* Jump over non-matching operations. */ +static unsigned char * +skip_noops (p, pend) + unsigned char *p, *pend; +{ + int mcnt; + while (p < pend) + { + switch (SWITCH_ENUM_CAST ((re_opcode_t) *p)) + { + case start_memory: + case stop_memory: + p += 2; break; + case no_op: + p += 1; break; + case jump: + p += 1; + EXTRACT_NUMBER_AND_INCR (mcnt, p); + p += mcnt; + break; + default: + return p; + } + } + assert (p == pend); + return p; +} + +/* Non-zero if "p1 matches something" implies "p2 fails". */ +static int +mutually_exclusive_p (bufp, p1, p2) + struct re_pattern_buffer *bufp; + unsigned char *p1, *p2; +{ + re_opcode_t op2; + const boolean multibyte = bufp->multibyte; + unsigned char *pend = bufp->buffer + bufp->used; + + assert (p1 >= bufp->buffer && p1 < pend + && p2 >= bufp->buffer && p2 <= pend); + + /* Skip over open/close-group commands. + If what follows this loop is a ...+ construct, + look at what begins its body, since we will have to + match at least one of that. */ + p2 = skip_noops (p2, pend); + /* The same skip can be done for p1, except that this function + is only used in the case where p1 is a simple match operator. */ + /* p1 = skip_noops (p1, pend); */ + + assert (p1 >= bufp->buffer && p1 < pend + && p2 >= bufp->buffer && p2 <= pend); + + op2 = p2 == pend ? succeed : *p2; + + switch (SWITCH_ENUM_CAST (op2)) + { + case succeed: + case endbuf: + /* If we're at the end of the pattern, we can change. */ + if (skip_one_char (p1)) + { + DEBUG_PRINT1 (" End of pattern: fast loop.\n"); + return 1; + } + break; + + case endline: + if (!bufp->newline_anchor) + break; + /* Fallthrough */ + case exactn: + { + register unsigned int c + = (re_opcode_t) *p2 == endline ? '\n' + : RE_STRING_CHAR(p2 + 2, pend - p2 - 2); + + if ((re_opcode_t) *p1 == exactn) + { + if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2)) + { + DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]); + return 1; + } + } + + else if ((re_opcode_t) *p1 == charset + || (re_opcode_t) *p1 == charset_not) + { + int not = (re_opcode_t) *p1 == charset_not; + + /* Test if C is listed in charset (or charset_not) + at `p1'. */ + if (SINGLE_BYTE_CHAR_P (c)) + { + if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH + && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) + not = !not; + } + else if (CHARSET_RANGE_TABLE_EXISTS_P (p1)) + CHARSET_LOOKUP_RANGE_TABLE (not, c, p1); + + /* `not' is equal to 1 if c would match, which means + that we can't change to pop_failure_jump. */ + if (!not) + { + DEBUG_PRINT1 (" No match => fast loop.\n"); + return 1; + } + } + else if ((re_opcode_t) *p1 == anychar + && c == '\n') + { + DEBUG_PRINT1 (" . != \\n => fast loop.\n"); + return 1; + } + } + break; + + case charset: + case charset_not: + { + if ((re_opcode_t) *p1 == exactn) + /* Reuse the code above. */ + return mutually_exclusive_p (bufp, p2, p1); + + + /* It is hard to list up all the character in charset + P2 if it includes multibyte character. Give up in + such case. */ + else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2)) + { + /* Now, we are sure that P2 has no range table. + So, for the size of bitmap in P2, `p2[1]' is + enough. But P1 may have range table, so the + size of bitmap table of P1 is extracted by + using macro `CHARSET_BITMAP_SIZE'. + + Since we know that all the character listed in + P2 is ASCII, it is enough to test only bitmap + table of P1. */ + + if (*p1 == *p2) + { + int idx; + /* We win if the charset inside the loop + has no overlap with the one after the loop. */ + for (idx = 0; + (idx < (int) p2[1] + && idx < CHARSET_BITMAP_SIZE (p1)); + idx++) + if ((p2[2 + idx] & p1[2 + idx]) != 0) + break; + + if (idx == p2[1] + || idx == CHARSET_BITMAP_SIZE (p1)) + { + DEBUG_PRINT1 (" No match => fast loop.\n"); + return 1; + } + } + else if ((re_opcode_t) *p1 == charset + || (re_opcode_t) *p1 == charset_not) + { + int idx; + /* We win if the charset_not inside the loop lists + every character listed in the charset after. */ + for (idx = 0; idx < (int) p2[1]; idx++) + if (! (p2[2 + idx] == 0 + || (idx < CHARSET_BITMAP_SIZE (p1) + && ((p2[2 + idx] & ~ p1[2 + idx]) == 0)))) + break; + + if (idx == p2[1]) + { + DEBUG_PRINT1 (" No match => fast loop.\n"); + return 1; + } + } + } + } + +#ifdef emacs + case wordend: + case notsyntaxspec: + return ((re_opcode_t) *p1 == syntaxspec + && p1[1] == (op2 == wordend ? Sword : p2[1])); + + case wordbeg: + case syntaxspec: + return ((re_opcode_t) *p1 == notsyntaxspec + && p1[1] == (op2 == wordend ? Sword : p2[1])); + + case wordbound: + return (((re_opcode_t) *p1 == notsyntaxspec + || (re_opcode_t) *p1 == syntaxspec) + && p1[1] == Sword); + + case categoryspec: + return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]); + case notcategoryspec: + return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]); +#endif /* emacs */ + + default: + ; + } + + /* Safe default. */ + return 0; +} + + +/* Matching routines. */ + +#ifndef emacs /* Emacs never uses this. */ +/* re_match is like re_match_2 except it takes only a single string. */ + +int +re_match (bufp, string, size, pos, regs) + struct re_pattern_buffer *bufp; + const char *string; + int size, pos; + struct re_registers *regs; +{ + int result = re_match_2_internal (bufp, NULL, 0, string, size, + pos, regs, size); + alloca (0); + return result; +} +#endif /* not emacs */ + +#ifdef emacs +/* In Emacs, this is the string or buffer in which we + are matching. It is used for looking up syntax properties. */ +Lisp_Object re_match_object; +#endif + +/* re_match_2 matches the compiled pattern in BUFP against the + the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1 + and SIZE2, respectively). We start matching at POS, and stop + matching at STOP. + + If REGS is non-null and the `no_sub' field of BUFP is nonzero, we + store offsets for the substring each group matched in REGS. See the + documentation for exactly how many groups we fill. + + We return -1 if no match, -2 if an internal error (such as the + failure stack overflowing). Otherwise, we return the length of the + matched substring. */ + +int +re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop) + struct re_pattern_buffer *bufp; + const char *string1, *string2; + int size1, size2; + int pos; + struct re_registers *regs; + int stop; +{ + int result; + +#ifdef emacs + int charpos; + gl_state.object = re_match_object; + charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos)); + SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1); +#endif + + result = re_match_2_internal (bufp, string1, size1, string2, size2, + pos, regs, stop); + alloca (0); + return result; +} + +/* This is a separate function so that we can force an alloca cleanup + afterwards. */ +static int +re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop) + struct re_pattern_buffer *bufp; + re_char *string1, *string2; + int size1, size2; + int pos; + struct re_registers *regs; + int stop; +{ + /* General temporaries. */ + int mcnt; + boolean not; + unsigned char *p1; + + /* Just past the end of the corresponding string. */ + re_char *end1, *end2; + + /* Pointers into string1 and string2, just past the last characters in + each to consider matching. */ + re_char *end_match_1, *end_match_2; + + /* Where we are in the data, and the end of the current string. */ + re_char *d, *dend; + + /* Used sometimes to remember where we were before starting matching + an operator so that we can go back in case of failure. This "atomic" + behavior of matching opcodes is indispensable to the correctness + of the on_failure_keep_string_jump optimization. */ + re_char *dfail; + + /* Where we are in the pattern, and the end of the pattern. */ + unsigned char *p = bufp->buffer; + register unsigned char *pend = p + bufp->used; + + /* We use this to map every character in the string. */ + RE_TRANSLATE_TYPE translate = bufp->translate; + + /* Nonzero if we have to concern multibyte character. */ + int multibyte = bufp->multibyte; + + /* Failure point stack. Each place that can handle a failure further + down the line pushes a failure point on this stack. It consists of + regstart, and regend for all registers corresponding to + the subexpressions we're currently inside, plus the number of such + registers, and, finally, two char *'s. The first char * is where + to resume scanning the pattern; the second one is where to resume + scanning the strings. */ +#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */ + fail_stack_type fail_stack; +#endif +#ifdef DEBUG + static unsigned failure_id = 0; + unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0; +#endif + +#if defined (REL_ALLOC) && defined (REGEX_MALLOC) + /* This holds the pointer to the failure stack, when + it is allocated relocatably. */ + fail_stack_elt_t *failure_stack_ptr; +#endif + + /* We fill all the registers internally, independent of what we + return, for use in backreferences. The number here includes + an element for register zero. */ + unsigned num_regs = bufp->re_nsub + 1; + + /* Information on the contents of registers. These are pointers into + the input strings; they record just what was matched (on this + attempt) by a subexpression part of the pattern, that is, the + regnum-th regstart pointer points to where in the pattern we began + matching and the regnum-th regend points to right after where we + stopped matching the regnum-th subexpression. (The zeroth register + keeps track of what the whole pattern matches.) */ +#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ + re_char **regstart, **regend; +#endif + + /* The following record the register info as found in the above + variables when we find a match better than any we've seen before. + This happens as we backtrack through the failure points, which in + turn happens only if we have not yet matched the entire string. */ + unsigned best_regs_set = false; +#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */ + re_char **best_regstart, **best_regend; +#endif + + /* Logically, this is `best_regend[0]'. But we don't want to have to + allocate space for that if we're not allocating space for anything + else (see below). Also, we never need info about register 0 for + any of the other register vectors, and it seems rather a kludge to + treat `best_regend' differently than the rest. So we keep track of + the end of the best match so far in a separate variable. We + initialize this to NULL so that when we backtrack the first time + and need to test it, it's not garbage. */ + re_char *match_end = NULL; + +#ifdef DEBUG + /* Counts the total number of registers pushed. */ + unsigned num_regs_pushed = 0; +#endif + + DEBUG_PRINT1 ("\n\nEntering re_match_2.\n"); + + INIT_FAIL_STACK (); + +#ifdef MATCH_MAY_ALLOCATE + /* Do not bother to initialize all the register variables if there are + no groups in the pattern, as it takes a fair amount of time. If + there are groups, we include space for register 0 (the whole + pattern), even though we never use it, since it simplifies the + array indexing. We should fix this. */ + if (bufp->re_nsub) + { + regstart = REGEX_TALLOC (num_regs, re_char *); + regend = REGEX_TALLOC (num_regs, re_char *); + best_regstart = REGEX_TALLOC (num_regs, re_char *); + best_regend = REGEX_TALLOC (num_regs, re_char *); + + if (!(regstart && regend && best_regstart && best_regend)) + { + FREE_VARIABLES (); + return -2; + } + } + else + { + /* We must initialize all our variables to NULL, so that + `FREE_VARIABLES' doesn't try to free them. */ + regstart = regend = best_regstart = best_regend = NULL; + } +#endif /* MATCH_MAY_ALLOCATE */ + + /* The starting position is bogus. */ + if (pos < 0 || pos > size1 + size2) + { + FREE_VARIABLES (); + return -1; + } + + /* Initialize subexpression text positions to -1 to mark ones that no + start_memory/stop_memory has been seen for. Also initialize the + register information struct. */ + for (mcnt = 1; mcnt < num_regs; mcnt++) + regstart[mcnt] = regend[mcnt] = REG_UNSET_VALUE; + + /* Shorten strings to `stop'. */ + if (stop <= size1) + { + size1 = stop; + size2 = 0; + } + else if (stop <= size1 + size2) + size2 = stop - size1; + + /* We move `string1' into `string2' if the latter's empty -- but not if + `string1' is null. */ + if (size2 == 0 && string1 != NULL) + { + string2 = string1; + size2 = size1; + string1 = 0; + size1 = 0; + } + end1 = string1 + size1; + end2 = string2 + size2; + + /* Compute where to stop matching, within the two strings. */ + end_match_1 = end1; + end_match_2 = end2; + + /* `p' scans through the pattern as `d' scans through the data. + `dend' is the end of the input string that `d' points within. `d' + is advanced into the following input string whenever necessary, but + this happens before fetching; therefore, at the beginning of the + loop, `d' can be pointing at the end of a string, but it cannot + equal `string2'. */ + if (size1 > 0 && pos <= size1) + { + d = string1 + pos; + dend = end_match_1; + } + else + { + d = string2 + pos - size1; + dend = end_match_2; + } + + DEBUG_PRINT1 ("The compiled pattern is: "); + DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend); + DEBUG_PRINT1 ("The string to match is: `"); + DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2); + DEBUG_PRINT1 ("'\n"); + + /* This loops over pattern commands. It exits by returning from the + function if the match is complete, or it drops through if the match + fails at this starting point in the input data. */ + for (;;) + { + DEBUG_PRINT2 ("\n%p: ", p); + + if (p == pend) + { /* End of pattern means we might have succeeded. */ + DEBUG_PRINT1 ("end of pattern ... "); + + /* If we haven't matched the entire string, and we want the + longest match, try backtracking. */ + if (d != end_match_2) + { + /* 1 if this match ends in the same string (string1 or string2) + as the best previous match. */ + boolean same_str_p = (FIRST_STRING_P (match_end) + == FIRST_STRING_P (d)); + /* 1 if this match is the best seen so far. */ + boolean best_match_p; + + /* AIX compiler got confused when this was combined + with the previous declaration. */ + if (same_str_p) + best_match_p = d > match_end; + else + best_match_p = !FIRST_STRING_P (d); + + DEBUG_PRINT1 ("backtracking.\n"); + + if (!FAIL_STACK_EMPTY ()) + { /* More failure points to try. */ + + /* If exceeds best match so far, save it. */ + if (!best_regs_set || best_match_p) + { + best_regs_set = true; + match_end = d; + + DEBUG_PRINT1 ("\nSAVING match as best so far.\n"); + + for (mcnt = 1; mcnt < num_regs; mcnt++) + { + best_regstart[mcnt] = regstart[mcnt]; + best_regend[mcnt] = regend[mcnt]; + } + } + goto fail; + } + + /* If no failure points, don't restore garbage. And if + last match is real best match, don't restore second + best one. */ + else if (best_regs_set && !best_match_p) + { + restore_best_regs: + /* Restore best match. It may happen that `dend == + end_match_1' while the restored d is in string2. + For example, the pattern `x.*y.*z' against the + strings `x-' and `y-z-', if the two strings are + not consecutive in memory. */ + DEBUG_PRINT1 ("Restoring best registers.\n"); + + d = match_end; + dend = ((d >= string1 && d <= end1) + ? end_match_1 : end_match_2); + + for (mcnt = 1; mcnt < num_regs; mcnt++) + { + regstart[mcnt] = best_regstart[mcnt]; + regend[mcnt] = best_regend[mcnt]; + } + } + } /* d != end_match_2 */ + + succeed_label: + DEBUG_PRINT1 ("Accepting match.\n"); + + /* If caller wants register contents data back, do it. */ + if (regs && !bufp->no_sub) + { + /* Have the register data arrays been allocated? */ + if (bufp->regs_allocated == REGS_UNALLOCATED) + { /* No. So allocate them with malloc. We need one + extra element beyond `num_regs' for the `-1' marker + GNU code uses. */ + regs->num_regs = MAX (RE_NREGS, num_regs + 1); + regs->start = TALLOC (regs->num_regs, regoff_t); + regs->end = TALLOC (regs->num_regs, regoff_t); + if (regs->start == NULL || regs->end == NULL) + { + FREE_VARIABLES (); + return -2; + } + bufp->regs_allocated = REGS_REALLOCATE; + } + else if (bufp->regs_allocated == REGS_REALLOCATE) + { /* Yes. If we need more elements than were already + allocated, reallocate them. If we need fewer, just + leave it alone. */ + if (regs->num_regs < num_regs + 1) + { + regs->num_regs = num_regs + 1; + RETALLOC (regs->start, regs->num_regs, regoff_t); + RETALLOC (regs->end, regs->num_regs, regoff_t); + if (regs->start == NULL || regs->end == NULL) + { + FREE_VARIABLES (); + return -2; + } + } + } + else + { + /* These braces fend off a "empty body in an else-statement" + warning under GCC when assert expands to nothing. */ + assert (bufp->regs_allocated == REGS_FIXED); + } + + /* Convert the pointer data in `regstart' and `regend' to + indices. Register zero has to be set differently, + since we haven't kept track of any info for it. */ + if (regs->num_regs > 0) + { + regs->start[0] = pos; + regs->end[0] = POINTER_TO_OFFSET (d); + } + + /* Go through the first `min (num_regs, regs->num_regs)' + registers, since that is all we initialized. */ + for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++) + { + if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt])) + regs->start[mcnt] = regs->end[mcnt] = -1; + else + { + regs->start[mcnt] + = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]); + regs->end[mcnt] + = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]); + } + } + + /* If the regs structure we return has more elements than + were in the pattern, set the extra elements to -1. If + we (re)allocated the registers, this is the case, + because we always allocate enough to have at least one + -1 at the end. */ + for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++) + regs->start[mcnt] = regs->end[mcnt] = -1; + } /* regs && !bufp->no_sub */ + + DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n", + nfailure_points_pushed, nfailure_points_popped, + nfailure_points_pushed - nfailure_points_popped); + DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed); + + mcnt = POINTER_TO_OFFSET (d) - pos; + + DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt); + + FREE_VARIABLES (); + return mcnt; + } + + /* Otherwise match next pattern command. */ + switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++)) + { + /* Ignore these. Used to ignore the n of succeed_n's which + currently have n == 0. */ + case no_op: + DEBUG_PRINT1 ("EXECUTING no_op.\n"); + break; + + case succeed: + DEBUG_PRINT1 ("EXECUTING succeed.\n"); + goto succeed_label; + + /* Match the next n pattern characters exactly. The following + byte in the pattern defines n, and the n bytes after that + are the characters to match. */ + case exactn: + mcnt = *p++; + DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt); + + /* Remember the start point to rollback upon failure. */ + dfail = d; + + /* This is written out as an if-else so we don't waste time + testing `translate' inside the loop. */ + if (RE_TRANSLATE_P (translate)) + { +#ifdef emacs + if (multibyte) + do + { + int pat_charlen, buf_charlen; + unsigned int pat_ch, buf_ch; + + PREFETCH (); + pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen); + buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen); + + if (RE_TRANSLATE (translate, buf_ch) + != pat_ch) + { + d = dfail; + goto fail; + } + + p += pat_charlen; + d += buf_charlen; + mcnt -= pat_charlen; + } + while (mcnt > 0); + else +#endif /* not emacs */ + do + { + PREFETCH (); + if (RE_TRANSLATE (translate, *d) != *p++) + { + d = dfail; + goto fail; + } + d++; + } + while (--mcnt); + } + else + { + do + { + PREFETCH (); + if (*d++ != *p++) + { + d = dfail; + goto fail; + } + } + while (--mcnt); + } + break; + + + /* Match any character except possibly a newline or a null. */ + case anychar: + { + int buf_charlen; + unsigned int buf_ch; + + DEBUG_PRINT1 ("EXECUTING anychar.\n"); + + PREFETCH (); + +#ifdef emacs + if (multibyte) + buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen); + else +#endif /* not emacs */ + { + buf_ch = *d; + buf_charlen = 1; + } + + buf_ch = TRANSLATE (buf_ch); + + if ((!(bufp->syntax & RE_DOT_NEWLINE) + && buf_ch == '\n') + || ((bufp->syntax & RE_DOT_NOT_NULL) + && buf_ch == '\000')) + goto fail; + + DEBUG_PRINT2 (" Matched `%d'.\n", *d); + d += buf_charlen; + } + break; + + + case charset: + case charset_not: + { + register unsigned int c; + boolean not = (re_opcode_t) *(p - 1) == charset_not; + int len; + + /* Start of actual range_table, or end of bitmap if there is no + range table. */ + unsigned char *range_table; + + /* Nonzero if there is a range table. */ + int range_table_exists; + + /* Number of ranges of range table. This is not included + in the initial byte-length of the command. */ + int count = 0; + + DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : ""); + + PREFETCH (); + c = *d; + + range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]); + +#ifdef emacs + if (range_table_exists) + { + range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */ + EXTRACT_NUMBER_AND_INCR (count, range_table); + } + + if (multibyte && BASE_LEADING_CODE_P (c)) + c = STRING_CHAR_AND_LENGTH (d, dend - d, len); +#endif /* emacs */ + + if (SINGLE_BYTE_CHAR_P (c)) + { /* Lookup bitmap. */ + c = TRANSLATE (c); /* The character to match. */ + len = 1; + + /* Cast to `unsigned' instead of `unsigned char' in + case the bit list is a full 32 bytes long. */ + if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH) + && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH))) + not = !not; + } +#ifdef emacs + else if (range_table_exists) + { + int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]); + + if ( (class_bits & BIT_ALNUM && ISALNUM (c)) + | (class_bits & BIT_ALPHA && ISALPHA (c)) + | (class_bits & BIT_ASCII && IS_REAL_ASCII (c)) + | (class_bits & BIT_GRAPH && ISGRAPH (c)) + | (class_bits & BIT_LOWER && ISLOWER (c)) + | (class_bits & BIT_MULTIBYTE && !ISUNIBYTE (c)) + | (class_bits & BIT_NONASCII && !IS_REAL_ASCII (c)) + | (class_bits & BIT_PRINT && ISPRINT (c)) + | (class_bits & BIT_PUNCT && ISPUNCT (c)) + | (class_bits & BIT_SPACE && ISSPACE (c)) + | (class_bits & BIT_UNIBYTE && ISUNIBYTE (c)) + | (class_bits & BIT_UPPER && ISUPPER (c)) + | (class_bits & BIT_WORD && ISWORD (c))) + not = !not; + else + CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count); + } +#endif /* emacs */ + + if (range_table_exists) + p = CHARSET_RANGE_TABLE_END (range_table, count); + else + p += CHARSET_BITMAP_SIZE (&p[-1]) + 1; + + if (!not) goto fail; + + d += len; + break; + } + + + /* The beginning of a group is represented by start_memory. + The argument is the register number. The text + matched within the group is recorded (in the internal + registers data structure) under the register number. */ + case start_memory: + DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p); + + /* In case we need to undo this operation (via backtracking). */ + PUSH_FAILURE_REG ((unsigned int)*p); + + regstart[*p] = d; + regend[*p] = REG_UNSET_VALUE; /* probably unnecessary. -sm */ + DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p])); + + /* Move past the register number and inner group count. */ + p += 1; + break; + + + /* The stop_memory opcode represents the end of a group. Its + argument is the same as start_memory's: the register number. */ + case stop_memory: + DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p); + + assert (!REG_UNSET (regstart[*p])); + /* Strictly speaking, there should be code such as: + + assert (REG_UNSET (regend[*p])); + PUSH_FAILURE_REGSTOP ((unsigned int)*p); + + But the only info to be pushed is regend[*p] and it is known to + be UNSET, so there really isn't anything to push. + Not pushing anything, on the other hand deprives us from the + guarantee that regend[*p] is UNSET since undoing this operation + will not reset its value properly. This is not important since + the value will only be read on the next start_memory or at + the very end and both events can only happen if this stop_memory + is *not* undone. */ + + regend[*p] = d; + DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p])); + + /* Move past the register number and the inner group count. */ + p += 1; + break; + + + /* \ has been turned into a `duplicate' command which is + followed by the numeric value of as the register number. */ + case duplicate: + { + register re_char *d2, *dend2; + int regno = *p++; /* Get which register to match against. */ + DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno); + + /* Can't back reference a group which we've never matched. */ + if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno])) + goto fail; + + /* Where in input to try to start matching. */ + d2 = regstart[regno]; + + /* Remember the start point to rollback upon failure. */ + dfail = d; + + /* Where to stop matching; if both the place to start and + the place to stop matching are in the same string, then + set to the place to stop, otherwise, for now have to use + the end of the first string. */ + + dend2 = ((FIRST_STRING_P (regstart[regno]) + == FIRST_STRING_P (regend[regno])) + ? regend[regno] : end_match_1); + for (;;) + { + /* If necessary, advance to next segment in register + contents. */ + while (d2 == dend2) + { + if (dend2 == end_match_2) break; + if (dend2 == regend[regno]) break; + + /* End of string1 => advance to string2. */ + d2 = string2; + dend2 = regend[regno]; + } + /* At end of register contents => success */ + if (d2 == dend2) break; + + /* If necessary, advance to next segment in data. */ + PREFETCH (); + + /* How many characters left in this segment to match. */ + mcnt = dend - d; + + /* Want how many consecutive characters we can match in + one shot, so, if necessary, adjust the count. */ + if (mcnt > dend2 - d2) + mcnt = dend2 - d2; + + /* Compare that many; failure if mismatch, else move + past them. */ + if (RE_TRANSLATE_P (translate) + ? bcmp_translate (d, d2, mcnt, translate) + : bcmp (d, d2, mcnt)) + { + d = dfail; + goto fail; + } + d += mcnt, d2 += mcnt; + } + } + break; + + + /* begline matches the empty string at the beginning of the string + (unless `not_bol' is set in `bufp'), and, if + `newline_anchor' is set, after newlines. */ + case begline: + DEBUG_PRINT1 ("EXECUTING begline.\n"); + + if (AT_STRINGS_BEG (d)) + { + if (!bufp->not_bol) break; + } + else if (d[-1] == '\n' && bufp->newline_anchor) + { + break; + } + /* In all other cases, we fail. */ + goto fail; + + + /* endline is the dual of begline. */ + case endline: + DEBUG_PRINT1 ("EXECUTING endline.\n"); + + if (AT_STRINGS_END (d)) + { + if (!bufp->not_eol) break; + } + + /* We have to ``prefetch'' the next character. */ + else if ((d == end1 ? *string2 : *d) == '\n' + && bufp->newline_anchor) + { + break; + } + goto fail; + + + /* Match at the very beginning of the data. */ + case begbuf: + DEBUG_PRINT1 ("EXECUTING begbuf.\n"); + if (AT_STRINGS_BEG (d)) + break; + goto fail; + + + /* Match at the very end of the data. */ + case endbuf: + DEBUG_PRINT1 ("EXECUTING endbuf.\n"); + if (AT_STRINGS_END (d)) + break; + goto fail; + + + /* on_failure_keep_string_jump is used to optimize `.*\n'. It + pushes NULL as the value for the string on the stack. Then + `POP_FAILURE_POINT' will keep the current value for the + string, instead of restoring it. To see why, consider + matching `foo\nbar' against `.*\n'. The .* matches the foo; + then the . fails against the \n. But the next thing we want + to do is match the \n against the \n; if we restored the + string value, we would be back at the foo. + + Because this is used only in specific cases, we don't need to + check all the things that `on_failure_jump' does, to make + sure the right things get saved on the stack. Hence we don't + share its code. The only reason to push anything on the + stack at all is that otherwise we would have to change + `anychar's code to do something besides goto fail in this + case; that seems worse than this. */ + case on_failure_keep_string_jump: + EXTRACT_NUMBER_AND_INCR (mcnt, p); + DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n", + mcnt, p + mcnt); + + PUSH_FAILURE_POINT (p - 3, NULL); + break; + + + /* Simple loop detecting on_failure_jump: just check on the + failure stack if the same spot was already hit earlier. */ + case on_failure_jump_loop: + on_failure: + EXTRACT_NUMBER_AND_INCR (mcnt, p); + DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n", + mcnt, p + mcnt); + + CHECK_INFINITE_LOOP (p - 3, d); + PUSH_FAILURE_POINT (p - 3, d); + break; + + + /* Uses of on_failure_jump: + + Each alternative starts with an on_failure_jump that points + to the beginning of the next alternative. Each alternative + except the last ends with a jump that in effect jumps past + the rest of the alternatives. (They really jump to the + ending jump of the following alternative, because tensioning + these jumps is a hassle.) + + Repeats start with an on_failure_jump that points past both + the repetition text and either the following jump or + pop_failure_jump back to this on_failure_jump. */ + case on_failure_jump: + QUIT; + EXTRACT_NUMBER_AND_INCR (mcnt, p); + DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n", + mcnt, p + mcnt); + + PUSH_FAILURE_POINT (p -3, d); + break; + + /* This operation is used for greedy *. + Compare the beginning of the repeat with what in the + pattern follows its end. If we can establish that there + is nothing that they would both match, i.e., that we + would have to backtrack because of (as in, e.g., `a*a') + then we can use a non-backtracking loop based on + on_failure_keep_string_jump instead of on_failure_jump. */ + case on_failure_jump_smart: + QUIT; + EXTRACT_NUMBER_AND_INCR (mcnt, p); + DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n", + mcnt, p + mcnt); + { + unsigned char *p1 = p; /* Next operation. */ + unsigned char *p2 = p + mcnt; /* Destination of the jump. */ + + p -= 3; /* Reset so that we will re-execute the + instruction once it's been changed. */ + + EXTRACT_NUMBER (mcnt, p2 - 2); + + /* Ensure this is a indeed the trivial kind of loop + we are expecting. */ + assert (skip_one_char (p1) == p2 - 3); + assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p); + DEBUG_STATEMENT (debug += 2); + if (mutually_exclusive_p (bufp, p1, p2)) + { + /* Use a fast `on_failure_keep_string_jump' loop. */ + DEBUG_PRINT1 (" smart exclusive => fast loop.\n"); + *p = (unsigned char) on_failure_keep_string_jump; + STORE_NUMBER (p2 - 2, mcnt + 3); + } + else + { + /* Default to a safe `on_failure_jump' loop. */ + DEBUG_PRINT1 (" smart default => slow loop.\n"); + *p = (unsigned char) on_failure_jump; + } + DEBUG_STATEMENT (debug -= 2); + } + break; + + /* Unconditionally jump (without popping any failure points). */ + case jump: + unconditional_jump: + QUIT; + EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */ + DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt); + p += mcnt; /* Do the jump. */ + DEBUG_PRINT2 ("(to %p).\n", p); + break; + + + /* Have to succeed matching what follows at least n times. + After that, handle like `on_failure_jump'. */ + case succeed_n: + EXTRACT_NUMBER (mcnt, p + 2); + DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt); + + assert (mcnt >= 0); + /* Originally, this is how many times we HAVE to succeed. */ + if (mcnt > 0) + { + mcnt--; + p += 2; + STORE_NUMBER_AND_INCR (p, mcnt); + DEBUG_PRINT3 (" Setting %p to %d.\n", p, mcnt); + } + else if (mcnt == 0) + { + DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n", p+2); + p[2] = (unsigned char) no_op; + p[3] = (unsigned char) no_op; + goto on_failure; + } + break; + + case jump_n: + EXTRACT_NUMBER (mcnt, p + 2); + DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt); + + /* Originally, this is how many times we CAN jump. */ + if (mcnt) + { + mcnt--; + STORE_NUMBER (p + 2, mcnt); + goto unconditional_jump; + } + /* If don't have to jump any more, skip over the rest of command. */ + else + p += 4; + break; + + case set_number_at: + { + DEBUG_PRINT1 ("EXECUTING set_number_at.\n"); + + EXTRACT_NUMBER_AND_INCR (mcnt, p); + p1 = p + mcnt; + EXTRACT_NUMBER_AND_INCR (mcnt, p); + DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt); + STORE_NUMBER (p1, mcnt); + break; + } + + case wordbound: + case notwordbound: + not = (re_opcode_t) *(p - 1) == notwordbound; + DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":""); + + /* We SUCCEED (or FAIL) in one of the following cases: */ + + /* Case 1: D is at the beginning or the end of string. */ + if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)) + not = !not; + else + { + /* C1 is the character before D, S1 is the syntax of C1, C2 + is the character at D, and S2 is the syntax of C2. */ + int c1, c2, s1, s2; +#ifdef emacs + int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d - 1)); + UPDATE_SYNTAX_TABLE (charpos); +#endif + /* FIXME: This does a STRING_CHAR even for unibyte buffers. */ + GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); + s1 = SYNTAX (c1); +#ifdef emacs + UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1); +#endif + PREFETCH (); + /* FIXME: This does a STRING_CHAR even for unibyte buffers. */ + c2 = STRING_CHAR (d, dend - d); + s2 = SYNTAX (c2); + + if (/* Case 2: Only one of S1 and S2 is Sword. */ + ((s1 == Sword) != (s2 == Sword)) + /* Case 3: Both of S1 and S2 are Sword, and macro + WORD_BOUNDARY_P (C1, C2) returns nonzero. */ + || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2))) + not = !not; + } + if (not) + break; + else + goto fail; + + case wordbeg: + DEBUG_PRINT1 ("EXECUTING wordbeg.\n"); + + /* We FAIL in one of the following cases: */ + + /* Case 1: D is at the end of string. */ + if (AT_STRINGS_END (d)) + goto fail; + else + { + /* C1 is the character before D, S1 is the syntax of C1, C2 + is the character at D, and S2 is the syntax of C2. */ + int c1, c2, s1, s2; +#ifdef emacs + int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d)); + UPDATE_SYNTAX_TABLE (charpos); +#endif + PREFETCH (); + /* FIXME: This does a STRING_CHAR even for unibyte buffers. */ + c2 = STRING_CHAR (d, dend - d); + s2 = SYNTAX (c2); + + /* Case 2: S2 is not Sword. */ + if (s2 != Sword) + goto fail; + + /* Case 3: D is not at the beginning of string ... */ + if (!AT_STRINGS_BEG (d)) + { + GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); +#ifdef emacs + UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1); +#endif + s1 = SYNTAX (c1); + + /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2) + returns 0. */ + if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2)) + goto fail; + } + } + break; + + case wordend: + DEBUG_PRINT1 ("EXECUTING wordend.\n"); + + /* We FAIL in one of the following cases: */ + + /* Case 1: D is at the beginning of string. */ + if (AT_STRINGS_BEG (d)) + goto fail; + else + { + /* C1 is the character before D, S1 is the syntax of C1, C2 + is the character at D, and S2 is the syntax of C2. */ + int c1, c2, s1, s2; +#ifdef emacs + int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d) - 1); + UPDATE_SYNTAX_TABLE (charpos); +#endif + GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2); + s1 = SYNTAX (c1); + + /* Case 2: S1 is not Sword. */ + if (s1 != Sword) + goto fail; + + /* Case 3: D is not at the end of string ... */ + if (!AT_STRINGS_END (d)) + { + PREFETCH (); + /* FIXME: This does a STRING_CHAR even for unibyte buffers. */ + c2 = STRING_CHAR (d, dend - d); +#ifdef emacs + UPDATE_SYNTAX_TABLE_FORWARD (charpos); +#endif + s2 = SYNTAX (c2); + + /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2) + returns 0. */ + if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2)) + goto fail; + } + } + break; + +#ifdef emacs + case before_dot: + DEBUG_PRINT1 ("EXECUTING before_dot.\n"); + if (PTR_BYTE_POS (d) >= PT_BYTE) + goto fail; + break; + + case at_dot: + DEBUG_PRINT1 ("EXECUTING at_dot.\n"); + if (PTR_BYTE_POS (d) != PT_BYTE) + goto fail; + break; + + case after_dot: + DEBUG_PRINT1 ("EXECUTING after_dot.\n"); + if (PTR_BYTE_POS (d) <= PT_BYTE) + goto fail; + break; + + case syntaxspec: + DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt); + mcnt = *p++; + goto matchsyntax; + + case wordchar: + DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n"); + mcnt = (int) Sword; + matchsyntax: + PREFETCH (); +#ifdef emacs + { + int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d)); + UPDATE_SYNTAX_TABLE (pos1); + } +#endif + { + int c, len; + + if (multibyte) + /* we must concern about multibyte form, ... */ + c = STRING_CHAR_AND_LENGTH (d, dend - d, len); + else + /* everything should be handled as ASCII, even though it + looks like multibyte form. */ + c = *d, len = 1; + + if (SYNTAX (c) != (enum syntaxcode) mcnt) + goto fail; + d += len; + } + break; + + case notsyntaxspec: + DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt); + mcnt = *p++; + goto matchnotsyntax; + + case notwordchar: + DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n"); + mcnt = (int) Sword; + matchnotsyntax: + PREFETCH (); +#ifdef emacs + { + int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (PTR_TO_OFFSET (d)); + UPDATE_SYNTAX_TABLE (pos1); + } +#endif + { + int c, len; + + if (multibyte) + c = STRING_CHAR_AND_LENGTH (d, dend - d, len); + else + c = *d, len = 1; + + if (SYNTAX (c) == (enum syntaxcode) mcnt) + goto fail; + d += len; + } + break; + + case categoryspec: + DEBUG_PRINT2 ("EXECUTING categoryspec %d.\n", *p); + mcnt = *p++; + PREFETCH (); + { + int c, len; + + if (multibyte) + c = STRING_CHAR_AND_LENGTH (d, dend - d, len); + else + c = *d, len = 1; + + if (!CHAR_HAS_CATEGORY (c, mcnt)) + goto fail; + d += len; + } + break; + + case notcategoryspec: + DEBUG_PRINT2 ("EXECUTING notcategoryspec %d.\n", *p); + mcnt = *p++; + PREFETCH (); + { + int c, len; + + if (multibyte) + c = STRING_CHAR_AND_LENGTH (d, dend - d, len); + else + c = *d, len = 1; + + if (CHAR_HAS_CATEGORY (c, mcnt)) + goto fail; + d += len; + } + break; + +#else /* not emacs */ + case wordchar: + DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n"); + PREFETCH (); + if (!WORDCHAR_P (d)) + goto fail; + d++; + break; + + case notwordchar: + DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n"); + PREFETCH (); + if (WORDCHAR_P (d)) + goto fail; + d++; + break; +#endif /* not emacs */ + + default: + abort (); + } + continue; /* Successfully executed one pattern command; keep going. */ + + + /* We goto here if a matching operation fails. */ + fail: + QUIT; + if (!FAIL_STACK_EMPTY ()) + { + re_char *str; + unsigned char *pat; + /* A restart point is known. Restore to that state. */ + DEBUG_PRINT1 ("\nFAIL:\n"); + POP_FAILURE_POINT (str, pat); + switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++)) + { + case on_failure_keep_string_jump: + assert (str == NULL); + goto continue_failure_jump; + + case on_failure_jump_loop: + case on_failure_jump: + case succeed_n: + d = str; + continue_failure_jump: + EXTRACT_NUMBER_AND_INCR (mcnt, pat); + p = pat + mcnt; + break; + + default: + abort(); + } + + assert (p >= bufp->buffer && p <= pend); + + if (d >= string1 && d <= end1) + dend = end_match_1; + } + else + break; /* Matching at this starting point really fails. */ + } /* for (;;) */ + + if (best_regs_set) + goto restore_best_regs; + + FREE_VARIABLES (); + + return -1; /* Failure to match. */ +} /* re_match_2 */ + +/* Subroutine definitions for re_match_2. */ + +/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN + bytes; nonzero otherwise. */ + +static int +bcmp_translate (s1, s2, len, translate) + unsigned char *s1, *s2; + register int len; + RE_TRANSLATE_TYPE translate; +{ + register unsigned char *p1 = s1, *p2 = s2; + unsigned char *p1_end = s1 + len; + unsigned char *p2_end = s2 + len; + + while (p1 != p1_end && p2 != p2_end) + { + int p1_charlen, p2_charlen; + int p1_ch, p2_ch; + + /* FIXME: This assumes `multibyte = true'. */ + p1_ch = STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen); + p2_ch = STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen); + + if (RE_TRANSLATE (translate, p1_ch) + != RE_TRANSLATE (translate, p2_ch)) + return 1; + + p1 += p1_charlen, p2 += p2_charlen; + } + + if (p1 != p1_end || p2 != p2_end) + return 1; + + return 0; +} + +/* Entry points for GNU code. */ + +/* re_compile_pattern is the GNU regular expression compiler: it + compiles PATTERN (of length SIZE) and puts the result in BUFP. + Returns 0 if the pattern was valid, otherwise an error string. + + Assumes the `allocated' (and perhaps `buffer') and `translate' fields + are set in BUFP on entry. + + We call regex_compile to do the actual compilation. */ + +const char * +re_compile_pattern (pattern, length, bufp) + const char *pattern; + int length; + struct re_pattern_buffer *bufp; +{ + reg_errcode_t ret; + + /* GNU code is written to assume at least RE_NREGS registers will be set + (and at least one extra will be -1). */ + bufp->regs_allocated = REGS_UNALLOCATED; + + /* And GNU code determines whether or not to get register information + by passing null for the REGS argument to re_match, etc., not by + setting no_sub. */ + bufp->no_sub = 0; + + /* Match anchors at newline. */ + bufp->newline_anchor = 1; + + ret = regex_compile (pattern, length, re_syntax_options, bufp); + + if (!ret) + return NULL; + return gettext (re_error_msgid[(int) ret]); +} + +/* Entry points compatible with 4.2 BSD regex library. We don't define + them unless specifically requested. */ + +#if defined (_REGEX_RE_COMP) || defined (_LIBC) + +/* BSD has one and only one pattern buffer. */ +static struct re_pattern_buffer re_comp_buf; + +char * +#ifdef _LIBC +/* Make these definitions weak in libc, so POSIX programs can redefine + these names if they don't use our functions, and still use + regcomp/regexec below without link errors. */ +weak_function +#endif +re_comp (s) + const char *s; +{ + reg_errcode_t ret; + + if (!s) + { + if (!re_comp_buf.buffer) + return gettext ("No previous regular expression"); + return 0; + } + + if (!re_comp_buf.buffer) + { + re_comp_buf.buffer = (unsigned char *) malloc (200); + if (re_comp_buf.buffer == NULL) + return gettext (re_error_msgid[(int) REG_ESPACE]); + re_comp_buf.allocated = 200; + + re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH); + if (re_comp_buf.fastmap == NULL) + return gettext (re_error_msgid[(int) REG_ESPACE]); + } + + /* Since `re_exec' always passes NULL for the `regs' argument, we + don't need to initialize the pattern buffer fields which affect it. */ + + /* Match anchors at newlines. */ + re_comp_buf.newline_anchor = 1; + + ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf); + + if (!ret) + return NULL; + + /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */ + return (char *) gettext (re_error_msgid[(int) ret]); +} + + +int +#ifdef _LIBC +weak_function +#endif +re_exec (s) + const char *s; +{ + const int len = strlen (s); + return + 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0); +} +#endif /* _REGEX_RE_COMP */ + +/* POSIX.2 functions. Don't define these for Emacs. */ + +#ifndef emacs + +/* regcomp takes a regular expression as a string and compiles it. + + PREG is a regex_t *. We do not expect any fields to be initialized, + since POSIX says we shouldn't. Thus, we set + + `buffer' to the compiled pattern; + `used' to the length of the compiled pattern; + `syntax' to RE_SYNTAX_POSIX_EXTENDED if the + REG_EXTENDED bit in CFLAGS is set; otherwise, to + RE_SYNTAX_POSIX_BASIC; + `newline_anchor' to REG_NEWLINE being set in CFLAGS; + `fastmap' and `fastmap_accurate' to zero; + `re_nsub' to the number of subexpressions in PATTERN. + + PATTERN is the address of the pattern string. + + CFLAGS is a series of bits which affect compilation. + + If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we + use POSIX basic syntax. + + If REG_NEWLINE is set, then . and [^...] don't match newline. + Also, regexec will try a match beginning after every newline. + + If REG_ICASE is set, then we considers upper- and lowercase + versions of letters to be equivalent when matching. + + If REG_NOSUB is set, then when PREG is passed to regexec, that + routine will report only success or failure, and nothing about the + registers. + + It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for + the return codes and their meanings.) */ + +int +regcomp (preg, pattern, cflags) + regex_t *preg; + const char *pattern; + int cflags; +{ + reg_errcode_t ret; + unsigned syntax + = (cflags & REG_EXTENDED) ? + RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC; + + /* regex_compile will allocate the space for the compiled pattern. */ + preg->buffer = 0; + preg->allocated = 0; + preg->used = 0; + + /* Don't bother to use a fastmap when searching. This simplifies the + REG_NEWLINE case: if we used a fastmap, we'd have to put all the + characters after newlines into the fastmap. This way, we just try + every character. */ + preg->fastmap = 0; + + if (cflags & REG_ICASE) + { + unsigned i; + + preg->translate + = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE + * sizeof (*(RE_TRANSLATE_TYPE)0)); + if (preg->translate == NULL) + return (int) REG_ESPACE; + + /* Map uppercase characters to corresponding lowercase ones. */ + for (i = 0; i < CHAR_SET_SIZE; i++) + preg->translate[i] = ISUPPER (i) ? tolower (i) : i; + } + else + preg->translate = NULL; + + /* If REG_NEWLINE is set, newlines are treated differently. */ + if (cflags & REG_NEWLINE) + { /* REG_NEWLINE implies neither . nor [^...] match newline. */ + syntax &= ~RE_DOT_NEWLINE; + syntax |= RE_HAT_LISTS_NOT_NEWLINE; + /* It also changes the matching behavior. */ + preg->newline_anchor = 1; + } + else + preg->newline_anchor = 0; + + preg->no_sub = !!(cflags & REG_NOSUB); + + /* POSIX says a null character in the pattern terminates it, so we + can use strlen here in compiling the pattern. */ + ret = regex_compile (pattern, strlen (pattern), syntax, preg); + + /* POSIX doesn't distinguish between an unmatched open-group and an + unmatched close-group: both are REG_EPAREN. */ + if (ret == REG_ERPAREN) ret = REG_EPAREN; + + return (int) ret; +} + + +/* regexec searches for a given pattern, specified by PREG, in the + string STRING. + + If NMATCH is zero or REG_NOSUB was set in the cflags argument to + `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at + least NMATCH elements, and we set them to the offsets of the + corresponding matched substrings. + + EFLAGS specifies `execution flags' which affect matching: if + REG_NOTBOL is set, then ^ does not match at the beginning of the + string; if REG_NOTEOL is set, then $ does not match at the end. + + We return 0 if we find a match and REG_NOMATCH if not. */ + +int +regexec (preg, string, nmatch, pmatch, eflags) + const regex_t *preg; + const char *string; + size_t nmatch; + regmatch_t pmatch[]; + int eflags; +{ + int ret; + struct re_registers regs; + regex_t private_preg; + int len = strlen (string); + boolean want_reg_info = !preg->no_sub && nmatch > 0; + + private_preg = *preg; + + private_preg.not_bol = !!(eflags & REG_NOTBOL); + private_preg.not_eol = !!(eflags & REG_NOTEOL); + + /* The user has told us exactly how many registers to return + information about, via `nmatch'. We have to pass that on to the + matching routines. */ + private_preg.regs_allocated = REGS_FIXED; + + if (want_reg_info) + { + regs.num_regs = nmatch; + regs.start = TALLOC (nmatch, regoff_t); + regs.end = TALLOC (nmatch, regoff_t); + if (regs.start == NULL || regs.end == NULL) + return (int) REG_NOMATCH; + } + + /* Perform the searching operation. */ + ret = re_search (&private_preg, string, len, + /* start: */ 0, /* range: */ len, + want_reg_info ? ®s : (struct re_registers *) 0); + + /* Copy the register information to the POSIX structure. */ + if (want_reg_info) + { + if (ret >= 0) + { + unsigned r; + + for (r = 0; r < nmatch; r++) + { + pmatch[r].rm_so = regs.start[r]; + pmatch[r].rm_eo = regs.end[r]; + } + } + + /* If we needed the temporary register info, free the space now. */ + free (regs.start); + free (regs.end); + } + + /* We want zero return to mean success, unlike `re_search'. */ + return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH; +} + + +/* Returns a message corresponding to an error code, ERRCODE, returned + from either regcomp or regexec. We don't use PREG here. */ + +size_t +regerror (errcode, preg, errbuf, errbuf_size) + int errcode; + const regex_t *preg; + char *errbuf; + size_t errbuf_size; +{ + const char *msg; + size_t msg_size; + + if (errcode < 0 + || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0]))) + /* Only error codes returned by the rest of the code should be passed + to this routine. If we are given anything else, or if other regex + code generates an invalid error code, then the program has a bug. + Dump core so we can fix it. */ + abort (); + + msg = gettext (re_error_msgid[errcode]); + + msg_size = strlen (msg) + 1; /* Includes the null. */ + + if (errbuf_size != 0) + { + if (msg_size > errbuf_size) + { + strncpy (errbuf, msg, errbuf_size - 1); + errbuf[errbuf_size - 1] = 0; + } + else + strcpy (errbuf, msg); + } + + return msg_size; +} + + +/* Free dynamically allocated space used by PREG. */ + +void +regfree (preg) + regex_t *preg; +{ + if (preg->buffer != NULL) + free (preg->buffer); + preg->buffer = NULL; + + preg->allocated = 0; + preg->used = 0; + + if (preg->fastmap != NULL) + free (preg->fastmap); + preg->fastmap = NULL; + preg->fastmap_accurate = 0; + + if (preg->translate != NULL) + free (preg->translate); + preg->translate = NULL; +} + +#endif /* not emacs */