isnan: port to VAX
[gnulib.git] / lib / isnan.c
1 /* Test for NaN that does not need libm.
2    Copyright (C) 2007-2013 Free Software Foundation, Inc.
3
4    This program is free software: you can redistribute it and/or modify
5    it under the terms of the GNU General Public License as published by
6    the Free Software Foundation; either version 3 of the License, or
7    (at your option) any later version.
8
9    This program is distributed in the hope that it will be useful,
10    but WITHOUT ANY WARRANTY; without even the implied warranty of
11    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12    GNU General Public License for more details.
13
14    You should have received a copy of the GNU General Public License
15    along with this program.  If not, see <http://www.gnu.org/licenses/>.  */
16
17 /* Written by Bruno Haible <bruno@clisp.org>, 2007.  */
18
19 #include <config.h>
20
21 /* Specification.  */
22 #ifdef USE_LONG_DOUBLE
23 /* Specification found in math.h or isnanl-nolibm.h.  */
24 extern int rpl_isnanl (long double x) _GL_ATTRIBUTE_CONST;
25 #elif ! defined USE_FLOAT
26 /* Specification found in math.h or isnand-nolibm.h.  */
27 extern int rpl_isnand (double x);
28 #else /* defined USE_FLOAT */
29 /* Specification found in math.h or isnanf-nolibm.h.  */
30 extern int rpl_isnanf (float x);
31 #endif
32
33 #include <float.h>
34 #include <string.h>
35
36 #include "float+.h"
37
38 #ifdef USE_LONG_DOUBLE
39 # define FUNC rpl_isnanl
40 # define DOUBLE long double
41 # define MAX_EXP LDBL_MAX_EXP
42 # define MIN_EXP LDBL_MIN_EXP
43 # if defined LDBL_EXPBIT0_WORD && defined LDBL_EXPBIT0_BIT
44 #  define KNOWN_EXPBIT0_LOCATION
45 #  define EXPBIT0_WORD LDBL_EXPBIT0_WORD
46 #  define EXPBIT0_BIT LDBL_EXPBIT0_BIT
47 # endif
48 # define SIZE SIZEOF_LDBL
49 # define L_(literal) literal##L
50 #elif ! defined USE_FLOAT
51 # define FUNC rpl_isnand
52 # define DOUBLE double
53 # define MAX_EXP DBL_MAX_EXP
54 # define MIN_EXP DBL_MIN_EXP
55 # if defined DBL_EXPBIT0_WORD && defined DBL_EXPBIT0_BIT
56 #  define KNOWN_EXPBIT0_LOCATION
57 #  define EXPBIT0_WORD DBL_EXPBIT0_WORD
58 #  define EXPBIT0_BIT DBL_EXPBIT0_BIT
59 # endif
60 # define SIZE SIZEOF_DBL
61 # define L_(literal) literal
62 #else /* defined USE_FLOAT */
63 # define FUNC rpl_isnanf
64 # define DOUBLE float
65 # define MAX_EXP FLT_MAX_EXP
66 # define MIN_EXP FLT_MIN_EXP
67 # if defined FLT_EXPBIT0_WORD && defined FLT_EXPBIT0_BIT
68 #  define KNOWN_EXPBIT0_LOCATION
69 #  define EXPBIT0_WORD FLT_EXPBIT0_WORD
70 #  define EXPBIT0_BIT FLT_EXPBIT0_BIT
71 # endif
72 # define SIZE SIZEOF_FLT
73 # define L_(literal) literal##f
74 #endif
75
76 #define EXP_MASK ((MAX_EXP - MIN_EXP) | 7)
77
78 #define NWORDS \
79   ((sizeof (DOUBLE) + sizeof (unsigned int) - 1) / sizeof (unsigned int))
80 typedef union { DOUBLE value; unsigned int word[NWORDS]; } memory_double;
81
82 /* Most hosts nowadays use IEEE floating point, so they use IEC 60559
83    representations, have infinities and NaNs, and do not trap on
84    exceptions.  Define IEEE_FLOATING_POINT if this host is one of the
85    typical ones.  The C11 macro __STDC_IEC_559__ is close to what is
86    wanted here, but is not quite right because this file does not require
87    all the features of C11 Annex F (and does not require C11 at all,
88    for that matter).  */
89
90 #define IEEE_FLOATING_POINT (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
91                              && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
92
93 int
94 FUNC (DOUBLE x)
95 {
96 #if defined KNOWN_EXPBIT0_LOCATION && IEEE_FLOATING_POINT
97 # if defined USE_LONG_DOUBLE && ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_)) && !HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
98   /* Special CPU dependent code is needed to treat bit patterns outside the
99      IEEE 754 specification (such as Pseudo-NaNs, Pseudo-Infinities,
100      Pseudo-Zeroes, Unnormalized Numbers, and Pseudo-Denormals) as NaNs.
101      These bit patterns are:
102        - exponent = 0x0001..0x7FFF, mantissa bit 63 = 0,
103        - exponent = 0x0000, mantissa bit 63 = 1.
104      The NaN bit pattern is:
105        - exponent = 0x7FFF, mantissa >= 0x8000000000000001.  */
106   memory_double m;
107   unsigned int exponent;
108
109   m.value = x;
110   exponent = (m.word[EXPBIT0_WORD] >> EXPBIT0_BIT) & EXP_MASK;
111 #  ifdef WORDS_BIGENDIAN
112   /* Big endian: EXPBIT0_WORD = 0, EXPBIT0_BIT = 16.  */
113   if (exponent == 0)
114     return 1 & (m.word[0] >> 15);
115   else if (exponent == EXP_MASK)
116     return (((m.word[0] ^ 0x8000U) << 16) | m.word[1] | (m.word[2] >> 16)) != 0;
117   else
118     return 1 & ~(m.word[0] >> 15);
119 #  else
120   /* Little endian: EXPBIT0_WORD = 2, EXPBIT0_BIT = 0.  */
121   if (exponent == 0)
122     return (m.word[1] >> 31);
123   else if (exponent == EXP_MASK)
124     return ((m.word[1] ^ 0x80000000U) | m.word[0]) != 0;
125   else
126     return (m.word[1] >> 31) ^ 1;
127 #  endif
128 # else
129   /* Be careful to not do any floating-point operation on x, such as x == x,
130      because x may be a signaling NaN.  */
131 #  if defined __SUNPRO_C || defined __ICC || defined _MSC_VER \
132       || defined __DECC || defined __TINYC__ \
133       || (defined __sgi && !defined __GNUC__)
134   /* The Sun C 5.0, Intel ICC 10.0, Microsoft Visual C/C++ 9.0, Compaq (ex-DEC)
135      6.4, and TinyCC compilers don't recognize the initializers as constant
136      expressions.  The Compaq compiler also fails when constant-folding
137      0.0 / 0.0 even when constant-folding is not required.  The Microsoft
138      Visual C/C++ compiler also fails when constant-folding 1.0 / 0.0 even
139      when constant-folding is not required. The SGI MIPSpro C compiler
140      complains about "floating-point operation result is out of range".  */
141   static DOUBLE zero = L_(0.0);
142   memory_double nan;
143   DOUBLE plus_inf = L_(1.0) / zero;
144   DOUBLE minus_inf = -L_(1.0) / zero;
145   nan.value = zero / zero;
146 #  else
147   static memory_double nan = { L_(0.0) / L_(0.0) };
148   static DOUBLE plus_inf = L_(1.0) / L_(0.0);
149   static DOUBLE minus_inf = -L_(1.0) / L_(0.0);
150 #  endif
151   {
152     memory_double m;
153
154     /* A NaN can be recognized through its exponent.  But exclude +Infinity and
155        -Infinity, which have the same exponent.  */
156     m.value = x;
157     if (((m.word[EXPBIT0_WORD] ^ nan.word[EXPBIT0_WORD])
158          & (EXP_MASK << EXPBIT0_BIT))
159         == 0)
160       return (memcmp (&m.value, &plus_inf, SIZE) != 0
161               && memcmp (&m.value, &minus_inf, SIZE) != 0);
162     else
163       return 0;
164   }
165 # endif
166 #else
167   /* The configuration did not find sufficient information, or does
168      not use IEEE floating point.  Give up about the signaling NaNs;
169      handle only the quiet NaNs.  */
170   if (x == x)
171     {
172 # if defined USE_LONG_DOUBLE && ((defined __ia64 && LDBL_MANT_DIG == 64) || (defined __x86_64__ || defined __amd64__) || (defined __i386 || defined __i386__ || defined _I386 || defined _M_IX86 || defined _X86_)) && !HAVE_SAME_LONG_DOUBLE_AS_DOUBLE
173       /* Detect any special bit patterns that pass ==; see comment above.  */
174       memory_double m1;
175       memory_double m2;
176
177       memset (&m1.value, 0, SIZE);
178       memset (&m2.value, 0, SIZE);
179       m1.value = x;
180       m2.value = x + (x ? 0.0L : -0.0L);
181       if (memcmp (&m1.value, &m2.value, SIZE) != 0)
182         return 1;
183 # endif
184       return 0;
185     }
186   else
187     return 1;
188 #endif
189 }